Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev B ; 108(12)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37841515

RESUMO

This work reports the experimental demonstration of single-slit diffraction exhibited by electrons propagating in encapsulated graphene with an effective de Broglie wavelength corresponding to their attributes as massless Dirac fermions. Nanometer-scale device designs were implemented to fabricate a single-slit followed by five detector paths. Predictive calculations were also utilized to readily understand the observations reported. These calculations required the modeling of wave propagation in ideal case scenarios of the reported device designs to more accurately describe the observed single-slit phenomenon. This experiment was performed at room temperature and 190 K, where data from the latter highlighted the exaggerated asymmetry between electrons and holes, recently ascribed to slightly different Fermi velocities near the K point. This observation and device concept may be used for building diffraction switches with versatile applicability.

2.
ACS Nano ; 17(11): 9694-9747, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37219929

RESUMO

Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.

3.
Nat Commun ; 13(1): 6824, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369280

RESUMO

The Hubbard model is an essential tool for understanding many-body physics in condensed matter systems. Artificial lattices of dopants in silicon are a promising method for the analog quantum simulation of extended Fermi-Hubbard Hamiltonians in the strong interaction regime. However, complex atom-based device fabrication requirements have meant emulating a tunable two-dimensional Fermi-Hubbard Hamiltonian in silicon has not been achieved. Here, we fabricate 3 × 3 arrays of single/few-dopant quantum dots with finite disorder and demonstrate tuning of the electron ensemble using gates and probe the many-body states using quantum transport measurements. By controlling the lattice constants, we tune the hopping amplitude and long-range interactions and observe the finite-size analogue of a transition from metallic to Mott insulating behavior. We simulate thermally activated hopping and Hubbard band formation using increased temperatures. As atomically precise fabrication continues to improve, these results enable a new class of engineered artificial lattices to simulate interactive fermionic models.

4.
Nanomaterials (Basel) ; 12(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159849

RESUMO

Two-dimensional (2D) materials that exhibit charge density waves (CDWs)-spontaneous reorganization of their electrons into a periodic modulation-have generated many research endeavors in the hopes of employing their exotic properties for various quantum-based technologies. Early investigations surrounding CDWs were mostly focused on bulk materials. However, applications for quantum devices require few-layer materials to fully utilize the emergent phenomena. The CDW field has greatly expanded over the decades, warranting a focus on the computational efforts surrounding them specifically in 2D materials. In this review, we cover ground in the following relevant theory-driven subtopics for TaS2 and TaSe2: summary of general computational techniques and methods, resulting atomic structures, the effect of electron-phonon interaction of the Raman scattering modes, the effects of confinement and dimensionality on the CDW, and we end with a future outlook. Through understanding how the computational methods have enabled incredible advancements in quantum materials, one may anticipate the ever-expanding directions available for continued pursuit as the field brings us through the 21st century.

5.
J Phys Condens Matter ; 33(49)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34521077

RESUMO

Decoherence in quantum bits (qubits) is a major challenge for realizing scalable quantum computing. One of the primary causes of decoherence in qubits and quantum circuits based on superconducting Josephson junctions is the critical current fluctuation. Many efforts have been devoted to suppressing the critical current fluctuation in Josephson junctions. Nonetheless, the efforts have been hindered by the defect-induced trapping states in oxide-based tunnel barriers and the interfaces with superconductors in the traditional Josephson junctions. Motivated by this, along with the recent demonstration of 2D insulatorh-BN with exceptional crystallinity and low defect density, we fabricated a vertical NbSe2/h-BN/Nb Josephson junction consisting of a bottom NbSe2superconductor thin layer and a top Nb superconductor spaced by an atomically thinh-BN layer. We further characterized the superconducting current and voltage (I-V) relationships and Fraunhofer pattern of the NbSe2/h-BN/Nb junction. Notably, we demonstrated the critical current noise (1/fnoise power) in theh-BN-based Josephson device is at least a factor of four lower than that of the previously studied aluminum oxide-based Josephson junctions. Our work offers a strong promise ofh-BN as a novel tunnel barrier for high-quality Josephson junctions and qubit applications.

6.
JPhys Mater ; 4(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409257

RESUMO

The era of two-dimensional (2D) materials, in its current form, truly began at the time that graphene was first isolated just over 15 years ago. Shortly thereafter, the use of 2D hexagonal boron nitride (h-BN) had expanded in popularity, with use of the thin isolator permeating a significant number of fields in condensed matter and beyond. Due to the impractical nature of cataloguing every use or research pursuit, this review will cover ground in the following three subtopics relevant to this versatile material: growth, electrical measurements, and applications in optics and photonics. Through understanding how the material has been utilized, one may anticipate some of the exciting directions made possible by the research conducted up through the turn of this decade.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34250452

RESUMO

Tantalum diselenide (TaSe2) is a metallic transition metal dichalcogenide whose structure and vibrational behavior strongly depend on temperature and thickness, and this behavior includes the emergence of charge density wave (CDW) states at very low temperatures. In this work, observed Raman modes for mono- and bilayer are described across several spectral regions and compared to those seen in the bulk case. These modes, which include an experimentally observed forbidden Raman mode and low-frequency CDWs, are then matched to corresponding vibrations predicted by density functional theory (DFT). The reported match between experimental and computational results supports the presented vibrational visualizations of these modes. Support is also provided by experimental phonons observed in additional Raman spectra as a function of temperature and thickness. These results highlight the importance of understanding CDWs since they are likely to play a fundamental role in the future realization of solid-state quantum information platforms based on nonequilibrium phenomena.

8.
Phys Rev B ; 103(7)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34263094

RESUMO

As first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays have tunable carrier densities, due to uniform epitaxial growth and chemical functionalization, allowing quantization at the robust ν = 2 filling factor in array devices at relative precision better than 10-8. Broad tunability of the carrier density also enables investigation of the ν = 6 plateau. Optimized networks of QHR devices described in this work suppress Ohmic contact resistance error using branched contacts and avoid crossover leakage with interconnections that are superconducting for quantizing magnetic fields up to 13.5 T. Our work enables more direct scaling of resistance for quantized values in arrays of arbitrary network geometry.

9.
IEEE Trans Electron Devices ; 68(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36452065

RESUMO

A new type of graphene-based quantum Hall standards is tested for electrical quantum metrology applications at alternating current (ac) and direct current (dc). The devices are functionalized with Cr(CO)3 to control the charge carrier density and have branched Hall contacts based on NbTiN superconducting material. The work is an in-depth study about the characteristic capacitances and related losses in the ac regime of the devices and about their performance during precision resistance measurements at dc and ac.

10.
Phys Rev B ; 104(8)2021.
Artigo em Inglês | MEDLINE | ID: mdl-36875776

RESUMO

We report on nonreciprocity observations in several configurations of graphene-based quantum Hall devices. Two distinct measurement configurations were adopted to verify the universality of the observations (i.e., two-terminal arrays and four-terminal devices). Our findings determine the extent to which epitaxial graphene anisotropies contribute to the observed asymmetric Hall responses. The presence of backscattering induces a device-dependent asymmetry rendering the Onsager-Casimir relations limited in their capacity to describe the behavior of such devices, except in the low-field classical regime and the fully quantized Hall state. The improved understanding of this quantum electrical process broadly limits the applicability of the reciprocity principle in the presence of quantum phase transitions and for anisotropic two-dimensional materials.

11.
Carbon N Y ; 1842021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37200678

RESUMO

Due to weak light-matter interaction, standard chemical vapor deposition (CVD)/exfoliated single-layer graphene-based photodetectors show low photoresponsivity (on the order of mA/W). However, epitaxial graphene (EG) offers a more viable approach for obtaining devices with good photoresponsivity. EG on 4H-SiC also hosts an interfacial buffer layer (IBL), which is the source of electron carriers applicable to quantum optoelectronic devices. We utilize these properties to demonstrate a gate-free, planar EG/4H-SiC-based device that enables us to observe the positive photoresponse for (405-532) nm and negative photoresponse for (632-980) nm laser excitation. The broadband binary photoresponse mainly originates from the energy band alignment of the IBL/EG interface and the highly sensitive work function of the EG. We find that the photoresponsivity of the device is > 10 A/W under 405 nm of power density 7.96 mW/cm2 at 1 V applied bias, which is three orders of magnitude greater than the obtained values of CVD/exfoliated graphene and higher than the required value for practical applications. These results path the way for selective light-triggered logic devices based on EG and can open a new window for broadband photodetection.

12.
Phys Rev B ; 104(8)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38883413

RESUMO

Here, we report the effects of enhanced magnetic fields resulting from type-II superconducting NbTiN slabs adjacent to narrow Hall bar devices fabricated from epitaxial graphene. Observed changes in the magnetoresistances were found to have minimal contributions from device inhomogeneities, magnet hysteresis, electron density variations along the devices, and transient phenomena. We hypothesize that Abrikosov vortices, present in type-II superconductors, contribute to these observations. By determining the London penetration depth, coupled with elements of Ginzburg-Landau theory, one can approximate an upper bound on the effect that vortex densities at low fields (< 1T) have on the reported observations. These analyses offer insights into device fabrication and how to utilize the Meissner effect for any low-field and low-temperature applications using superconductors.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33335332

RESUMO

This work presents one solution for long-term storage of epitaxial graphene (EG) in air, namely through the functionalization of millimeter-scale devices with chromium tricarbonyl - Cr(CO)3. The carrier density may be tuned reproducibly by annealing below 400 K due to the presence of Cr(CO)3. All tuning is easily reversible with exposure to air, with the idle, in-air, carrier density always being close to the Dirac point. Precision measurements in the quantum Hall regime indicate no detrimental effects from the treatment, validating the pursuit of developing air-stable EG-based QHR devices.

14.
IEEE Trans Instrum Meas ; 1.633481E62020.
Artigo em Inglês | MEDLINE | ID: mdl-33335333

RESUMO

Precision quantum Hall resistance measurements can be greatly improved when implementing new electrical contact geometries made from superconducting NbTiN. The sample designs described here minimize undesired resistances at contacts and interconnections, enabling further enhancement of device size and complexity when pursuing next-generation quantized Hall resistance devices.

15.
IEEE Trans Instrum Meas ; 69: 9374-9380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335334

RESUMO

A graphene quantized Hall resistance (QHR) device fabricated at the National Institute of Standards and Technology (NIST) was measured alongside a GaAs QHR device fabricated by the National Research Council of Canada (NRC) by comparing them to a 1 kΩ standard resistor using a cryogenic current comparator. The two devices were mounted in a custom developed dual probe that was then assessed for its viability as a suitable apparatus for precision measurements. The charge carrier density of the graphene device exhibited controllable tunability when annealed after Cr(CO)3 functionalization. These initial measurement results suggest that making resistance comparisons is possible with a single probe wired for two types of quantum standards - GaAs, the established material, and graphene, the newer material that may promote the development of more user-friendly equipment.

16.
J Phys D Appl Phys ; 53(34)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071355

RESUMO

Measurements of fractional multiples of the ν = 2 plateau quantized Hall resistance (R H ≈ 12906 Ω) were enabled by the utilization of multiple current terminals on millimetre-scale graphene p-n junction devices fabricated with interfaces along both lateral directions. These quantum Hall resistance checkerboard devices have been demonstrated to match quantized resistance outputs numerically calculated with the LTspice circuit simulator. From the devices' functionality, more complex embodiments of the quantum Hall resistance checkerboard were simulated to highlight the parameter space within which these devices could operate. Moreover, these measurements suggest that the scalability of p-n junction fabrication on millimetre or centimetre scales is feasible with regards to graphene device manufacturing by using the far more efficient process of standard ultraviolet lithography.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32863578

RESUMO

A mathematical approach is introduced for predicting quantized resistances in graphene p-n junction devices that utilize more than a single entry and exit point for electron flow. Depending on the configuration of an arbitrary number of terminals, electrical measurements yield nonconventional, fractional multiples of the typical quantized Hall resistance at the v = 2 plateau (R H ≈ 12906 Ω) and take the form: a b R H . This theoretical formulation is independent of material, and applications to other material systems that exhibit quantum Hall behaviors are to be expected. Furthermore, this formulation is supported with experimental data from graphene devices with multiple source and drain terminals.

18.
J Phys D Appl Phys ; 53(27)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32831402

RESUMO

Just a few of the promising applications of graphene Corbino pnJ devices include two-dimensional Dirac fermion microscopes, custom programmable quantized resistors, and mesoscopic valley filters. In some cases, device scalability is crucial, as seen in fields like resistance metrology, where graphene devices are required to accommodate currents of the order 100 µA to be compatible with existing infrastructure. However, fabrication of these devices still poses many difficulties. In this work, unusual quantized resistances are observed in epitaxial graphene Corbino p-n junction devices held at the ν = 2 plateau (R H ≈ 12906 Ω) and agree with numerical simulations performed with the LTspice circuit simulator. The formulae describing experimental and simulated data are empirically derived for generalized placement of up to three current terminals and accurately reflects observed partial edge channel cancellation. These results support the use of ultraviolet lithography as a way to scale up graphene-based devices with suitably narrow junctions that could be applied in a variety of subfields.

19.
Metrologia ; 57(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32127725

RESUMO

The unique properties of the quantum Hall effect allow one to revisit traditional measurement circuits with a new flavour. In this paper we present the first realization of a quantum Hall Kelvin bridge for the calibration of standard resistors directly against the quantum Hall resistance. The bridge design is particularly simple and requires a minimal number of instruments. The implementation here proposed is based on the bridge-on-a-chip, an integrated circuit composed of three graphene quantum Hall elements and superconducting wiring. The accuracy achieved in the calibration of a 12 906Ω standard resistor is of a few parts in 108, at present mainly limited by the prototype device and the interferences in the current implementation, with the potential to achieve few parts in 109, which is the level of the systematic uncertainty of the quantum Hall Kelvin bridge itself.

20.
J Res Natl Inst Stand Technol ; 125: 125012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35465390

RESUMO

Calibration services for resistance metrology have continued to advance their capabilities and establish new and improved methods for maintaining standard resistors. Despite the high quality of these methods, there still exist inherent limitations to the number of simultaneous, measurable resistors and the temperature stability of their air environment. In that context, we report progress on the design, development, and initial testing of a precise temperature-control chamber for standard resistors that can provide a constant-temperature environment with a stability of ± 6 m°C. Achieving this stability involved customizing the chamber design based on air-flow simulations. Moreover, microprocessor programming allowed the air flow to be optimized within an unsealed chamber configuration to reduce chamber temperature recovery times. Further tests were conducted to improve the stability of the control system and the efficiency of the chamber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA