Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; 29(3): 100135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703999

RESUMO

Laboratory management automation is essential for achieving interoperability in the domain of experimental research and accelerating scientific discovery. The integration of resources and the sharing of knowledge across organisations enable scientific discoveries to be accelerated by increasing the productivity of laboratories, optimising funding efficiency, and addressing emerging global challenges. This paper presents a novel framework for digitalising and automating the administration of research laboratories through The World Avatar, an all-encompassing dynamic knowledge graph. This Digital Laboratory Framework serves as a flexible tool, enabling users to efficiently leverage data from diverse systems and formats without being confined to a specific software or protocol. Establishing dedicated ontologies and agents and combining them with technologies such as QR codes, RFID tags, and mobile apps, enabled us to develop modular applications that tackle some key challenges related to lab management. Here, we showcase an automated tracking and intervention system for explosive chemicals as well as an easy-to-use mobile application for asset management and information retrieval. Implementing these, we have achieved semantic linking of BIM and BMS data with laboratory inventory and chemical knowledge. Our approach can capture the crucial data points and reduce inventory processing time. All data provenance is recorded following the FAIR principles, ensuring its accessibility and interoperability.


Assuntos
Automação Laboratorial , Automação Laboratorial/métodos , Laboratórios , Armazenamento e Recuperação da Informação/métodos
2.
Nat Commun ; 15(1): 462, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263405

RESUMO

The ability to integrate resources and share knowledge across organisations empowers scientists to expedite the scientific discovery process. This is especially crucial in addressing emerging global challenges that require global solutions. In this work, we develop an architecture for distributed self-driving laboratories within The World Avatar project, which seeks to create an all-encompassing digital twin based on a dynamic knowledge graph. We employ ontologies to capture data and material flows in design-make-test-analyse cycles, utilising autonomous agents as executable knowledge components to carry out the experimentation workflow. Data provenance is recorded to ensure its findability, accessibility, interoperability, and reusability. We demonstrate the practical application of our framework by linking two robots in Cambridge and Singapore for a collaborative closed-loop optimisation for a pharmaceutically-relevant aldol condensation reaction in real-time. The knowledge graph autonomously evolves toward the scientist's research goals, with the two robots effectively generating a Pareto front for cost-yield optimisation in three days.

3.
J Chem Inf Model ; 63(21): 6569-6586, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37883649

RESUMO

Web ontologies are important tools in modern scientific research because they provide a standardized way to represent and manage web-scale amounts of complex data. In chemistry, a semantic database for chemical species is indispensable for its ability to interrelate and infer relationships, enabling a more precise analysis and prediction of chemical behavior. This paper presents OntoSpecies, a web ontology designed to represent chemical species and their properties. The ontology serves as a core component of The World Avatar knowledge graph chemistry domain and includes a wide range of identifiers, chemical and physical properties, chemical classifications and applications, and spectral information associated with each species. The ontology includes provenance and attribution metadata, ensuring the reliability and traceability of data. Most of the information about chemical species are sourced from PubChem and ChEBI data on the respective compound Web pages using a software agent, making OntoSpecies a comprehensive semantic database of chemical species able to solve novel types of problems in the field. Access to this reliable source of chemical data is provided through a SPARQL end point. The paper presents example use cases to demonstrate the contribution of OntoSpecies in solving complex tasks that require integrated semantically searchable chemical data. The approach presented in this paper represents a significant advancement in the field of chemical data management, offering a powerful tool for representing, navigating, and analyzing chemical information to support scientific research.


Assuntos
Descoberta do Conhecimento , Software , Reprodutibilidade dos Testes , Bases de Dados Factuais , Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA