Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(4): 730-737, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38117161

RESUMO

Using the diamagnetic anisotropy of polymers for the characterization of polymers and polymer aggregates is a relatively new approach in the field of soft-matter and polymer research. So far, a good and thorough quantitative description of these diamagnetic properties has been lacking. Using a simple equation that links the magnetic properties of an average polymer repeating unit to those of the polymer vesicle of any shape, we measured, using magnetic birefringence, the average diamagnetic anisotropy of a polystyrene (PS) repeating unit, ΔχPS, inside a poly(ethylene glycol)-polystyrene (PEG-PS) polymersome membrane as a function of the PS-length and as a function of the preparation method. All obtained values of ΔχPS have a negative sign which results in polymers tending to align perpendicular to an applied magnetic field. Combined, the same order of magnitude of ΔχPS (10-12 m3 mol-1) for all polymersome shapes proves that the individual polymers are organized similarly regardless of the PS length and polymersome shape. Furthermore, the value found is only a fraction (∼1%) of what it can maximally be due to the random coiling of the polymers. We, therefore, predict that further ordering of the polymers within the membrane could lead to similar responses at much lower magnetic fields, possibly obtainable with permanent magnets, which would be highly advantageous for practical applications.

2.
Nano Lett ; 18(3): 2081-2085, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29411614

RESUMO

Accurate control of the shape transformation of polymersome is an important and interesting challenge that spans across disciplines such as nanomedicine and nanomachine. Here, we report a fast and facile methodology of shape manipulation of polymersome via out-of-equilibrium polymer self-assembly and shape change by chemical addition of additives. Due to its increased permeability, hydrophilicity, and fusogenic properties, poly(ethylene oxide) was selected as the additive for bringing the system out of equilibrium via fast addition into the polymersome organic solution. A new shape, stomatocyte-in-stomatocyte (sto-in-sto), is obtained for the first time. Moreover, fast shape transformation within less than 1 min to other relevant shapes such as stomatocyte and large compound vesicles was also obtained and accurately controlled in a uniform dispersion. This methodology is demonstrated as a general strategy with which to push the assembly further out of equilibrium to generate unusual nanostructures in a controllable and fast manner.

3.
J Am Chem Soc ; 138(30): 9353-6, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27374777

RESUMO

Polymersomes are robust, versatile nanostructures that can be tailored by varying the chemical structure of copolymeric building blocks, giving control over their size, shape, surface chemistry, and membrane permeability. In particular, the generation of nonspherical nanostructures has attracted much attention recently, as it has been demonstrated that shape affects function in a biomedical context. Until now, nonspherical polymersomes have only been constructed from nondegradable building blocks, hampering a detailed investigation of shape effects in nanomedicine for this category of nanostructures. Herein, we demonstrate the spontaneous elongation of spherical polymersomes comprising the biodegradable copolymer poly(ethylene glycol)-b-poly(d,l-lactide) into well-defined nanotubes. The size of these tubes is osmotically controlled using dialysis, which makes them very easy to prepare. To confirm their utility for biomedical applications, we have demonstrated that, alongside drug loading, functional proteins can be tethered to the surface utilizing bio-orthogonal "click" chemistry. In this way the present findings establish a novel platform for the creation of biocompatible, high-aspect ratio nanoparticles for biomedical research.


Assuntos
Nanotubos/química , Poliésteres/química , Polietilenoglicóis/química , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Moleculares , Osmose , Poliésteres/metabolismo , Polietilenoglicóis/metabolismo , Conformação Proteica
4.
Soft Matter ; 10(9): 1295-308, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24652392

RESUMO

In this review we will focus on how magnetic fields can be used to manipulate the motion of various micro- and nanostructures in solution. We will distinguish between ferromagnetic, paramagnetic and diamagnetic materials. Furthermore, the use of various kinds of magnetic fields, such as homogeneous, inhomogeneous and rotating magnetic fields, is discussed. To date most research has focused on the use of ferro- and paramagnetic materials, but here we also describe the possibilities of magnetic manipulation of diamagnetic materials. Since the vast majority of soft matter is diamagnetic, this paves the way for many new applications to manipulate the motion of micro- and nanostructures.

5.
Chem Commun (Camb) ; 50(40): 5394-6, 2014 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-24212531

RESUMO

Magnetic birefringence was used for in situ monitoring of the morphological changes in diamagnetic polymersomes during shape-transformation by dialysis. The birefringence was found to be very sensitive to the polymersome morphology, as determined by electron microscopy. The deflation of polymersomes into disks was observed, followed by a bending and partial inflation into stomatocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA