RESUMO
Proteome coverage and accurate protein quantification are both important for evaluating biological systems; however, compromises between quantification, coverage, and mass spectrometry (MS) resources are often necessary. Consequently, experimental parameters that impact coverage and quantification must be adjusted, depending on experimental goals. Among these parameters is offline prefractionation, which is utilized in MS-based proteomics to decrease sample complexity resulting in higher overall proteome coverage upon MS analysis. Prefractionation leads to increases in required MS analysis time, although this is often mitigated by isobaric labeling using tandem-mass tags (TMT), which allow samples to be multiplexed. Here we evaluate common prefractionation schemes, TMT variants, and MS acquisition methods and their impact on protein quantification and coverage. Furthermore, we provide recommendations for experimental design depending on the experimental goals.
Assuntos
Proteoma , Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Proteômica/normas , Espectrometria de Massas em Tandem/métodos , Proteoma/análise , Humanos , Fracionamento Químico/métodos , Coloração e Rotulagem/métodosRESUMO
Targeted and semitargeted mass spectrometry-based approaches are reliable methods to consistently detect and quantify low abundance proteins including proteins of clinical significance. Despite their potential, the development of targeted and semitargeted assays is time-consuming and often requires the purchase of costly libraries of synthetic peptides. To improve the efficiency of this rate-limiting step, we developed PeptideRanger, a tool to identify peptides from protein of interest with physiochemical properties that make them more likely to be suitable for mass spectrometry analysis. PeptideRanger is a flexible, extensively annotated, and intuitive R package that uses a random forest model trained on a diverse data set of thousands of MS experiments spanning a variety of sample types profiled with different chromatography setups and instruments. To support a variety of applications and to leverage rapidly growing public MS databases, PeptideRanger can readily be retrained with experiment-specific data sets and customized to prioritize and filter peptides based on selected properties.
Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Peptídeos/análise , Espectrometria de Massas/métodos , ProteínasRESUMO
Streptococcus mutans appears to possess a sole iron-sulfur (Fe-S) cluster biosynthesis system encoded by the sufCDSUB cluster. This study was designed to examine the role of sufCDSUB in S. mutans physiology. Allelic exchange mutants deficient of the whole sufCDSUB cluster and in individual genes were constructed. Compared to the wild-type, UA159, the sufCDSUB-deficient mutant, Δsuf::kan r , had a significantly reduced growth rate, especially in medium with the absence of isoleucine, leucine or glutamate/glutamine, amino acids that require Fe-S clusters for biosynthesis and when grown with medium adjusted to pH 6.0 and under oxidative and nitrosative stress conditions. Relative to UA159, Δsuf::kan r had major defects in stress tolerance responses with reduced survival rate of > 2-logs following incubation at low pH environment or after hydrogen peroxide challenge. When compared to UA159, Δsuf::kan r tended to form aggregates in broth medium and accumulated significantly less biofilm. As shown by luciferase reporter fusion assays, the expression of sufCDSUB was elevated by > 5.4-fold when the reporter strain was transferred from iron sufficient medium to iron-limiting medium. Oxidative stress induced by methyl viologen increased sufCDSUB expression by > 2-fold, and incubation in a low pH environment led to reduction of sufCDSUB expression by > 7-fold. These results suggest that lacking of SufCDSUB in S. mutans causes major defects in various cellular processes of the deficient mutant, including growth, stress tolerance responses and biofilm formation. In addition, the viability of the deficient mutant also suggests that SUF, the sole Fe-S cluster machinery identified is non-essential in S. mutans, which is not known in any other bacterium lacking the NIF and/or ISC system. However, how the bacterium compensates the Fe-S deficiency and if any novel Fe-S assembly systems exist in this bacterium await further investigation.
RESUMO
Pim kinases are upregulated in several forms of cancer, contributing to cell survival and tumour development, but their role in platelet function and thrombotic disease has not been explored. We report for the first time that Pim-1 is expressed in human and mouse platelets. Genetic deletion or pharmacological inhibition of Pim kinase results in reduced thrombus formation but is not associated with impaired haemostasis. Attenuation of thrombus formation was found to be due to inhibition of the thromboxane A2 receptor as effects on platelet function was non-additive to inhibition caused by the cyclooxygenase inhibitor indomethacin or thromboxane A2 receptor antagonist GR32191. Treatment with Pim kinase inhibitors caused reduced surface expression of the thromboxane A2 receptor and resulted in reduced responses to thromboxane A2 receptor agonists, indicating a role for Pim kinase in the regulation of thromboxane A2 receptor function. Our research identifies a novel, Pim kinase dependent regulatory mechanism for the thromboxane A2 receptor and represents a new targeting strategy that is independent of COX-1 inhibition or direct antagonism of the thromboxane A2 receptor that whilst attenuating thrombosis does not increase bleeding.