Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 19(2): 163-173, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38307024

RESUMO

Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge upon a pathogenic increase in LRRK2 kinase activity. A subset of small RAB GTPases has been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in RAB inactivation. We used CRISPR-Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well-validated LRRK2 substrates, RAB8a and RAB10, from deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed opposing effects of RAB8a and RAB10 deficiency on lysosomal pH and Golgi organization, with isolated effects of RAB8a and RAB10 ablation on α-synuclein and tau, respectively. Our data demonstrate largely antagonistic effects of genetic RAB8a or RAB10 inactivation, which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation in human disease.


Assuntos
alfa-Sinucleína , Proteínas rab de Ligação ao GTP , Humanos , alfa-Sinucleína/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Neurônios/metabolismo , Fosforilação , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
Acta Neuropathol Commun ; 11(1): 201, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110990

RESUMO

Autosomal dominant pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). The most common mutation, G2019S-LRRK2, increases the kinase activity of LRRK2 causing hyper-phosphorylation of its substrates. One of these substrates, Rab10, is phosphorylated at a conserved Thr73 residue (pRab10), and is one of the most abundant LRRK2 Rab GTPases expressed in various tissues. The involvement of Rab10 in neurodegenerative disease, including both PD and Alzheimer's disease makes pinpointing the cellular and subcellular localization of Rab10 and pRab10 in the brain an important step in understanding its functional role, and how post-translational modifications could impact function. To establish the specificity of antibodies to the phosphorylated form of Rab10 (pRab10), Rab10 specific antisense oligonucleotides were intraventricularly injected into the brains of mice. Further, Rab10 knock out induced neurons, differentiated from human induced pluripotent stem cells were used to test the pRab10 antibody specificity. To amplify the weak immunofluorescence signal of pRab10, tyramide signal amplification was utilized. Rab10 and pRab10 were expressed in the cortex, striatum and the substantia nigra pars compacta. Immunofluorescence for pRab10 was increased in G2019S-LRRK2 knockin mice. Neurons, astrocytes, microglia and oligodendrocytes all showed Rab10 and pRab10 expression. While Rab10 colocalized with endoplasmic reticulum, lysosome and trans-Golgi network markers, pRab10 did not localize to these organelles. However, pRab10, did overlap with markers of the presynaptic terminal in both mouse and human cortex, including α-synuclein. Results from this study suggest Rab10 and pRab10 are expressed in all brain areas and cell types tested in this study, but pRab10 is enriched at the presynaptic terminal. As Rab10 is a LRRK2 kinase substrate, increased kinase activity of G2019S-LRRK2 in PD may affect Rab10 mediated membrane trafficking at the presynaptic terminal in neurons in disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Camundongos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Fosforilação , Doença de Parkinson/genética , Mutação , Encéfalo/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
3.
bioRxiv ; 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37163109

RESUMO

Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge toward a pathogenic increase in LRRK2 kinase activity. A subset of small Rab GTPases have been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in Rab inactivation. We used CRISPR/Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well validated LRRK2 substrates, Rab8a and Rab10, from two independent, deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed divergent effects of Rab8a and Rab10 deficiency on lysosomal pH, LAMP1 association with Golgi, α-synuclein insolubility and tau phosphorylation, while parallel effects on lysosomal numbers and Golgi clustering were observed. Our data demonstrate largely antagonistic effects of genetic Rab8a or Rab10 inactivation which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation.

4.
Front Neurosci ; 17: 1268360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161790

RESUMO

The relative polymerization of specific tau protein cores that define Alzheimer's disease, Pick's disease and corticobasal degeneration were investigated using amyloid fluorometry and electron microscopy. In addition, the relative prion-like activities of polymers comprised of these respective tau protein segments were investigated in a cell-based assay. It is demonstrated that the seeding activities of specific tau core fibrils are affected by the presence of pathogenic tau missense mutations and the microtubule binding domain composition of tau. The unique impact of tau phosphorylation on seeding propensity was also investigated by altering stretches of phospho-mimetic and phospho-null residues in the presence of Alzheimer's disease tau core fibrils. These results have important mechanistic implications for mutation and isoform-specific driven pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA