Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cell Mol Life Sci ; 81(1): 160, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564048

RESUMO

The androgen receptor (AR) is a primary target for treating prostate cancer (PCa), forming the bedrock of its clinical management. Despite their efficacy, resistance often hampers AR-targeted therapies, necessitating new strategies against therapy-resistant PCa. These resistances involve various mechanisms, including AR splice variant overexpression and altered activities of transcription factors like the glucocorticoid receptor (GR) and FOXA1. These factors rely on common coregulators, such as EP300/CREBBP, suggesting a rationale for coregulator-targeted therapies. Our study explores EP300/CREBBP acetyltransferase inhibition's impact on steroid receptor and FOXA1 signaling in PCa cells using genome-wide techniques. Results reveal that EP300/CREBBP inhibition significantly disrupts the AR-regulated transcriptome and receptor chromatin binding by reducing the AR-gene expression. Similarly, GR's regulated transcriptome and receptor binding were hindered, not linked to reduced GR expression but to diminished FOXA1 chromatin binding, restricting GR signaling. Overall, our findings highlight how EP300/CREBBP inhibition distinctively curtails oncogenic transcription factors' signaling, suggesting the potential of coregulatory-targeted therapies in PCa.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Receptores de Glucocorticoides/genética , Fatores de Transcrição , Cromatina , Acetiltransferases , Fator 3-alfa Nuclear de Hepatócito/genética , Proteína p300 Associada a E1A/genética , Proteína de Ligação a CREB/genética
2.
Cancers (Basel) ; 16(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339385

RESUMO

Tumor-associated macrophages (TAMs) are associated with a poor outcome in breast cancer (BC), but their prognostic value in different BC subtypes has remained somewhat unclear. Here, we investigated the prognostic value of M2-like TAMs (CD163+) and all TAMs (CD68+) in a patient cohort of 278 non-metastatic BC patients, half of whom were HER2+ (n = 139). The survival endpoints investigated were overall survival (OS), breast cancer-specific survival (BCSS) and disease-free survival (DFS). In the whole patient cohort (n = 278), a high CD163+ TAM count and a high CD68+ TAM count were associated with a worse outcome (p ≤ 0.023). In HER2+ BC, a high CD163+ TAM count was an independent factor for a poor prognosis across all the investigated survival endpoints (p < 0.001). The prognostic effect was evident in both the HER2+/hormone receptor-positive (p < 0.001) and HER2+/hormone receptor-negative (p ≤ 0.012) subgroups and regardless of the provision of adjuvant trastuzumab (p ≤ 0.002). In HER2-negative BC, the CD163+ TAM count was not significantly associated with survival. These results suggest that a high CD163+ TAM count predicts an inferior outcome, especially in HER2+ BC patients, and as adjuvant trastuzumab did not overcome the poor prognostic effect, combination treatments including therapies targeting the macrophage function could represent an effective therapeutic approach in HER2+ BC.

3.
Commun Biol ; 7(1): 108, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238517

RESUMO

Treatment-induced neuroendocrine prostate cancer (t-NEPC) is a lethal subtype of castration-resistant prostate cancer resistant to androgen receptor (AR) inhibitors. Our study unveils that AR suppresses the neuronal development protein dihydropyrimidinase-related protein 5 (DPYSL5), providing a mechanism for neuroendocrine transformation under androgen deprivation therapy. Our unique CRPC-NEPC cohort, comprising 135 patient tumor samples, including 55 t-NEPC patient samples, exhibits a high expression of DPYSL5 in t-NEPC patient tumors. DPYSL5 correlates with neuroendocrine-related markers and inversely with AR and PSA. DPYSL5 overexpression in prostate cancer cells induces a neuron-like phenotype, enhances invasion, proliferation, and upregulates stemness and neuroendocrine-related markers. Mechanistically, DPYSL5 promotes prostate cancer cell plasticity via EZH2-mediated PRC2 activation. Depletion of DPYSL5 decreases proliferation, induces G1 phase cell cycle arrest, reverses neuroendocrine phenotype, and upregulates luminal genes. In conclusion, DPYSL5 plays a critical role in regulating prostate cancer cell plasticity, and we propose the AR/DPYSL5/EZH2/PRC2 axis as a driver of t-NEPC progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios , Próstata/patologia , Hidrolases , Proteínas Associadas aos Microtúbulos , Proteína Potenciadora do Homólogo 2 de Zeste/genética
4.
J Control Release ; 361: 1-19, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481214

RESUMO

Retinal drug delivery is a challenging, but important task, because most retinal diseases are still without any proper therapy. Drug delivery to the retina is hampered by the anatomical and physiological barriers resulting in minimal bioavailability after topical ocular and systemic administrations. Intravitreal injections are current method-of-choice in retinal delivery, but these injections show short duration of action for small molecules and low target bioavailability for many protein, gene based drugs and nanomedicines. State-of-art delivery systems are based on prolonged retention, controlled drug release and physical features (e.g. size and charge). However, drug delivery to the retina is not cell-specific and these approaches do not facilitate intracellular delivery of modern biological drugs (e.g. intracellular proteins, RNA based medicines, gene editing). In this focused review we highlight biological factors and mechanisms that form the basis for the selective retinal drug delivery systems in the future. Therefore, we are presenting current knowledge related to retinal membrane transporters, receptors and targeting ligands in relation to nanomedicines, conjugates, extracellular vesicles, and melanin binding. These issues are discussed in the light of retinal structure and cell types as well as future prospects in the field. Unlike in some other fields of targeted drug delivery (e.g. cancer research), selective delivery technologies have been rarely studied, even though cell targeted delivery may be even more feasible after local administration into the eye.


Assuntos
Sistemas de Liberação de Medicamentos , Doenças Retinianas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Retina/metabolismo , Preparações Farmacêuticas , Injeções Intravítreas
5.
Breast Cancer Res Treat ; 201(2): 183-192, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37428418

RESUMO

PURPOSE: In HER2-positive (HER2 +) breast cancer, tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) may influence the efficacy of the HER2-antibody trastuzumab and the patient's outcome. In this HER2 + patient cohort, our aim was to study the numbers of FoxP3 + regulatory TILs and CD8 + cytotoxic TILs, their correlations with CD68 + and CD163 + TAMs, and the prognostic and predictive value of the studied factors. METHODS: We evaluated 139 non-metastatic HER2 + breast cancer patients operated between 2001 and 2008. The FoxP3+TIL count (FoxP3+TILs) was assessed using the hotspot method, and the CD8 + TIL count (CD8+mTILs) utilizing a digital image analysis from invasive margin areas. The ratios between CD8+mTILs and FoxP3+TILs as well as CD8+mTILs and TAMs were calculated. RESULTS: FoxP3 + TILs and CD8 + mTILs correlated positively with each other (p<0.001). FoxP3+TILs had a positive correlation with CD68+and CD163+TAMs (p≤0.038), while CD8 + mTILs correlated only with CD68+TAMs (p<0.001). In the HER2 + and hormone receptor-positive Luminal B subgroup, high numbers of FoxP3+TILs were associated with shorter disease-free survival (DFS) (54% vs. 79%, p = 0.040). The benefit from adjuvant trastuzumab was extremely significant among patients with a high CD8 + mTILs/CD68 + TAMs ratio, with overall survival (OS) 84% vs. 33% (p = 0.003) and breast cancer-specific survival (BCSS) 88% vs. 48% (p = 0.009) among patients treated with or without trastuzumab, respectively. CONCLUSION: In the HER2 + Luminal B subgroup, high FoxP3 + TILs were associated with shorter DFS. A high CD8 + mTILs/CD68 + TAMs ratio seems to associate with impressive efficacy of trastuzumab.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Prognóstico , Linfócitos do Interstício Tumoral , Macrófagos Associados a Tumor/patologia , Trastuzumab/uso terapêutico , Linfócitos T CD8-Positivos
6.
J Extracell Vesicles ; 11(10): e12273, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36257915

RESUMO

Recent advances in cell biology research regarding extracellular vesicles have highlighted an increasing demand to obtain 3D cell culture-derived EVs, because they are considered to more accurately represent EVs obtained in vivo. However, there is still a grave need for efficient and tunable methodologies to isolate EVs from 3D cell cultures. Using nanofibrillar cellulose (NFC) scaffold as a 3D cell culture matrix, we developed a pipeline of two different approaches for EV isolation from cancer spheroids. A batch method was created for delivering high EV yield at the end of the culture period, and a harvesting method was created to enable time-dependent collection of EVs to combine EV profiling with spheroid development. Both these methods were easy to set up, quick to perform, and they provided a high EV yield. When compared to scaffold-free 3D spheroid cultures on ultra-low affinity plates, the NFC method resulted in similar EV production/cell, but the NFC method was scalable and easier to perform resulting in high EV yields. In summary, we introduce here an NFC-based, innovative pipeline for acquiring EVs from 3D cancer spheroids, which can be tailored to support the needs of variable EV research objectives.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Técnicas de Cultura de Células em Três Dimensões , Celulose
7.
Sci Rep ; 12(1): 17550, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266410

RESUMO

Osteoarthritis (OA) is a degenerative joint disease with inadequately understood pathogenesis leading to pain and functional limitations. Extracellular vesicles (EVs) released by synovial joint cells can induce both pro- and anti-OA effects. Hyaluronic acid (HA) lubricates the surfaces of articular cartilage and is one of the bioactive molecules transported by EVs. In humans, altered EV counts and composition can be observed in OA synovial fluid (SF), while EV research is in early stages in the horse-a well-recognized OA model. The aim was to characterize SF EVs and their HA cargo in 19 horses. SF was collected after euthanasia from control, OA, and contralateral metacarpophalangeal joints. The SF HA concentrations and size distribution were determined with a sandwich-type enzyme-linked sorbent assay and size-exclusion chromatography. Ultracentrifugation followed by nanoparticle tracking analysis (NTA) were utilized to quantify small EVs, while confocal laser scanning microscopy (CLSM) and image analysis characterized larger EVs. The number and size distribution of small EVs measured by NTA were unaffected by OA, but these results may be limited by the lack of hyaluronidase pre-treatment of the samples. When visualized by CLSM, the number and proportion of larger HA-containing EVs (HA-EVs) decreased in OA SF (generalized linear model, count: p = 0.024, %: p = 0.028). There was an inverse association between the OA grade and total EV count, HA-EV count, and HA-EV % (rs = - 0.264 to - 0.327, p = 0.012-0.045). The total HA concentrations were also lower in OA (generalized linear model, p = 0.002). To conclude, the present study discovered a potential SF biomarker (HA-EVs) for naturally occurring equine OA. The roles of HA-EVs in the pathogenesis of OA and their potential as a joint disease biomarker and therapeutic target warrant future studies.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , Osteoartrite , Animais , Biomarcadores , Cartilagem Articular/patologia , Vesículas Extracelulares/patologia , Cavalos , Ácido Hialurônico/química , Hialuronoglucosaminidase , Osteoartrite/veterinária , Osteoartrite/patologia
8.
Front Vet Sci ; 9: 894189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799843

RESUMO

Extracellular vesicles (EVs) are membrane-bound particles that engage in inflammatory reactions by mediating cell-cell interactions. Previously, EVs have been isolated from the bronchoalveolar lavage fluid (BALF) of humans and rodents. The aim of this study was to investigate the number and size distribution of EVs in the BALF of asthmatic horses (EA, n = 35) and healthy horses (n = 19). Saline was injected during bronchoscopy to the right lung followed by manual aspiration. The retrieved BALF was centrifuged twice to remove cells and biological debris. The supernatant was concentrated and EVs were isolated using size-exclusion chromatography. Sample fractions were measured with nanoparticle tracking analysis (NTA) for particle number and size, and transmission electron microscopy and confocal laser scanning microscopy were used to visualize EVs. The described method was able to isolate and preserve EVs. The mean EV size was 247 ± 35 nm (SD) in the EA horses and 261 ± 47 nm in the controls by NTA. The mean concentration of EVs was 1.38 × 1012 ± 1.42 × 1012 particles/mL in the EA horses and 1.33 × 1012 ± 1.07 × 1012 particles/mL in the controls with no statistically significant differences between the groups. With Western blotting and microscopy, these particles were documented to associate with EV protein markers (CD63, TSG101, HSP70, EMMPRIN, and actin) and hyaluronan. Equine BALF is rich in EVs of various sizes, and the described protocol is usable for isolating EVs. In the future, the role of EVs can be studied in horses with airway inflammation.

9.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628422

RESUMO

Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator precursors. Fibroblast-like synoviocytes (FLSs) secrete EVs that transport hyaluronic acid (HA). FLSs play a central role in inflammation, pannus formation, and cartilage degradation in joint diseases, and EVs have recently emerged as potential mediators of these effects. The aim of the present study was to follow temporal changes in HA and EV secretion by normal FLSs, and to characterize the FA profiles of FLSs and EVs during proliferation. The methods used included nanoparticle tracking analysis, confocal laser scanning microscopy, sandwich-type enzyme-linked sorbent assay, quantitative PCR, and gas chromatography. The expression of hyaluronan synthases 1-3 in FLSs and HA concentrations in conditioned media decreased during cell proliferation. This was associated with elevated proportions of 20:4n-6 and total n-6 polyunsaturated FAs (PUFAs) in high-density cells, reductions in n-3/n-6 PUFA ratios, and up-regulation of cluster of differentiation 44, tumor necrosis factor α, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ. Compared to the parent FLSs, 16:0, 18:0, and 18:1n-9 were enriched in the EV fraction. EV counts decreased during cell growth, and 18:2n-6 in EVs correlated with the cell count. To conclude, FLS proliferation was featured by increased 20:4n-6 proportions and reduced n-3/n-6 PUFA ratios, and FAs with a low degree of unsaturation were selectively transferred from FLSs into EVs. These FA modifications have the potential to affect membrane fluidity, biosynthesis of lipid mediators, and inflammatory processes in joints, and could eventually provide tools for translational studies to counteract cartilage degradation in inflammatory joint diseases.


Assuntos
Vesículas Extracelulares , Sinoviócitos , Vesículas Extracelulares/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fibroblastos/metabolismo , Humanos , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , PPAR gama/metabolismo , Sinoviócitos/metabolismo
10.
Eur J Cell Biol ; 101(3): 151235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35569384

RESUMO

We have shown the connection of hyaluronan synthesis activity with the enhanced shedding of extracellular vesicles, but detailed morphological analysis of those hyaluronan-induced EVs is still missing. In this study we utilized a comprehensive set of high-resolution imaging techniques to characterize in high detail the size and morphology of EVs originating from stable MCF7 breast cancer cell line and transiently transfected cells expressing GFP-HAS3. To avoid possible artefacts or loss of EVs resulting from the isolation process, special attention was paid to analysis of EVs in situ in monolayer and in 3D cultures. The results of this study show that GFP-HAS3 expressing MCF7 cells produce morphologically diverse EVs but also demonstrates the variation in results obtained with different experimental setup, which emphasizes the importance of comparison between different methods when interpreting the observations.


Assuntos
Vesículas Extracelulares , Ácido Hialurônico , Vesículas Extracelulares/metabolismo , Humanos , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Células MCF-7
11.
Front Oncol ; 12: 869417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574334

RESUMO

Invasion of tumor cells through the stroma is coordinated in response to migratory cues provided by the extracellular environment. One of the most abundant molecules in the tumor microenvironment is hyaluronan, a glycosaminoglycan known to promote many hallmarks of tumor progression, including the migratory potential of tumor cells. Strikingly, hyaluronan is also often found to coat extracellular vesicles (EVs) that originate from plasma membrane tentacles of tumor cells crucial for migration, such as filopodia, and are abundant in tumor niches. Thus, it is possible that hyaluronan and hyaluronan-coated EVs have a cooperative role in promoting migration. In this work, we compared the hyaluronan synthesis, EV secretion and migratory behavior of normal and aggressive breast cell lines from MCF10 series. Single live cell confocal imaging, electron microscopy and correlative light and electron microscopy experiments revealed that migrating tumor cells form EV-rich and hyaluronan -coated trails. These trails promote the pathfinding behavior of follower cells, which is dependent on hyaluronan. Specifically, we demonstrated that plasma membrane protrusions and EVs left behind by tumor cells during migration are strongly positive for CD9. Single cell tracking demonstrated a leader-follower behavior, which was significantly decreased upon removal of pericellular hyaluronan, indicating that hyaluronan promotes the pathfinding behavior of follower cells. Chick chorioallantoic membrane assays in ovo suggest that tumor cells behave similarly in 3D conditions. This study strengthens the important role of extracellular matrix production and architecture in coordinated tumor cell movements and validates the role of EVs as important components and regulators of tumor matrix. The results suggest that tumor cells can modify the extracellular niche by forming trails, which they subsequently follow coordinatively. Future studies will clarify in more detail the orchestrated role of hyaluronan, EVs and other extracellular cues in coordinated migration and pathfinding behavior of follower cells.

12.
Neurobiol Dis ; 170: 105753, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569719

RESUMO

Under physiological conditions in vivo astrocytes internalize and degrade neuronal mitochondria in a process called transmitophagy. Mitophagy is widely reported to be impaired in neurodegeneration but it is unknown whether and how transmitophagy is altered in Alzheimer's disease (AD). Here we report that the internalization of neuronal mitochondria is significantly increased in astrocytes isolated from AD mouse brains. We also demonstrate that the degradation of neuronal mitochondria by astrocytes is increased in AD mice at the age of 6 months onwards. Furthermore, we demonstrate for the first time a similar phenomenon between human neurons and AD astrocytes, and in murine hippocampi in vivo. The results suggest the involvement of S100a4 in impaired mitochondrial transfer between neurons and AD astrocytes together with significant increases in the mitophagy regulator and reactive oxygen species in aged AD astrocytes. These findings demonstrate altered neuron-supporting functions of AD astrocytes and provide a starting point for studying the molecular mechanisms of transmitophagy in AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Camundongos , Mitofagia , Neurônios/metabolismo
13.
Mikrochim Acta ; 189(1): 27, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905090

RESUMO

Change in the level of human prostate-specific antigen (PSA) is a major element in the development and progression of prostate cancer (PCa). Most of the methodologies are currently restricted to their application in routine clinical screening due to the scarcity of adequate screening tools, false reading, long assay time, and cost. Innovative techniques and the integration of knowledge from a variety of domains, such as materials science and engineering, are needed to provide sustainable solutions. The convergence of precision point-of-care (POC) diagnostic techniques, which allow patients to respond in real time to changes in PSA levels, provides promising possibilities for quantitative and quantitative detection of PSA. This solution could be interesting and relevant for use in PCa diagnosis at the POC. The approaches enable low-cost real-time detection and are simple to integrate into user-friendly sensor devices. This review focuses on the investigations, prospects, and challenges associated with integrating engineering sciences with cancer biology to develop nanotechnology-based tools for PCa diagnosis. This article intends to encourage the development of new nanomaterials to construct high-performance POC devices for PCa detection. Finally, the review concludes with closing remarks and a perspective forecast.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/química , Testes Imediatos , Antígeno Prostático Específico/análise , Humanos
14.
J Extracell Vesicles ; 10(11): e12148, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34533887

RESUMO

Plasma membrane curvature is an important factor in the regulation of cellular phenotype and is critical for various cellular activities including the shedding of extracellular vesicles (EV). One of the most striking morphological features of cells is different plasma membrane-covered extensions supported by actin core such as filopodia and microvilli. Despite the various functions of these extensions are partially unexplained, they are known to facilitate many crucial cellular functions such as migration, adhesion, absorption, and secretion. Due to the rapid increase in the research activity of EVs, there is raising evidence that one of the general features of cellular plasma membrane protrusions is to act as specialized platforms for the budding of EVs. This review will focus on early observations and recent findings supporting this hypothesis, discuss the putative budding and shedding mechanisms of protrusion-derived EVs and their biological significance.


Assuntos
Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica de Varredura/métodos , Humanos
15.
Mater Sci Eng C Mater Biol Appl ; 129: 112384, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579903

RESUMO

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a threat to global health because of limited treatments. MRSA infections are difficult to treat due to increasingly developing resistance in combination with protective biofilms of Staphylococcus aureus (S. aureus). Nanotechnology-based research revealed that effective MRSA treatments could be achieved through targeted nanoparticles (NPs) that withstand biological films and drug resistance. Thus, the principal aim towards improving MRSA treatment is to advance drug delivery tools, which successfully address the delivery-related problems. These potential delivery tools would also carry drugs to the desired sites of therapeutic action to overcome the adverse effects. This review focused on different types of nano-engineered carriers system for antimicrobial agents with improved therapeutic efficacy of entrapped drugs. The structural characteristics that play an essential role in the effectiveness of delivery systems have also been addressed with a description of recent scientific advances in antimicrobial treatment, emphasizing challenges in MRSA treatments. Consequently, existing gaps in the literature are highlighted, and reported contradictions are identified, allowing for the development of roadmaps for future research.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
16.
Nat Methods ; 18(9): 1013-1026, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34446922

RESUMO

Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.


Assuntos
Vesículas Extracelulares , Microscopia/métodos , Animais , Corantes/química , Epitopos , Vesículas Extracelulares/química , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Corantes Fluorescentes/química , Humanos
17.
Int J Pharm ; 601: 120556, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798688

RESUMO

An endosomal trap is a major barrier in gene therapy. We have designed an endosomolytic peptide based on the leucine zipper sequence and characterized it both structurally and functionally. The results illustrated that leucine zipper endosomolytic peptide (LZEP) exhibited appreciable hemolysis of human red blood cells (hRBCs) at pH 5.0, but negligible hemolysis at pH 7.4. Calcein release experiment indicated that only at pH 5.0 but not at pH 7.4, LZEP was able to permeabilize hRBCs. LZEP revealed significant self-assembly as well as peptide induced α-helical structure at pH 5.0. Unlike at pH 5.0, LZEP failed to self-assemble and showed a random coil structure at pH 7.4. Transfection data depicted that lipoplexes modified with LZEP resulted in significantly higher gene expression as compared to lipoplexes without LZEP. Interestingly, the transfection efficacy of LZEP modified lipid nanoparticles reached the levels of Lipofectamine 2000 (LF 2000), without any cellular toxicity as observed by MTT assay. The results suggest a novel approach for designing endosomolytic peptides by employing the leucine zipper sequence and simultaneously the designed peptides could be utilized for enhancing gene delivery into mammalian cells.


Assuntos
Zíper de Leucina , Peptídeos , Animais , Expressão Gênica , Hemólise , Humanos , Transfecção
18.
BMC Musculoskelet Disord ; 22(1): 247, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676459

RESUMO

BACKGROUND: Hyaluronic acid (HA) is the major extracellular matrix glycosaminoglycan with a reduced synovial fluid (SF) concentration in arthropathies. Cell-derived extracellular vesicles (EV) have also been proposed to contribute to pathogenesis in joint diseases. It has recently been shown that human SF contains HA-coated EV (HA-EV), but their concentration and function in joint pathologies remain unknown. METHODS: The aim of the present study was to develop an applicable method based on confocal laser scanning microscopy (CLSM) and image analysis for the quantification of EV, HA-particles, and HA-EV in the SF of the human knee joint. Samples were collected during total knee replacement surgery from patients with end-stage rheumatoid arthritis (RA, n = 8) and osteoarthritis (OA, n = 8), or during diagnostic/therapeutic arthroscopy unrelated to OA/RA (control, n = 7). To characterize and quantify EV, HA-particles, and HA-EV, SF was double-stained with plasma membrane and HA probes and visualized by CLSM. Comparisons between the patient groups were performed with the Kruskal-Wallis analysis of variance. RESULTS: The size distribution of EV and HA-particles was mostly similar in the study groups. Approximately 66% of EV fluorescence was co-localized with HA verifying that a significant proportion of EV carry HA. The study groups were clearly separated by the discriminant analysis based on the CLSM data. The intensities of EV and HA-particle fluorescences were lower in the RA than in the control and OA groups. CONCLUSIONS: CLSM analysis offers a useful tool to assess HA-EV in SF samples. The altered EV and HA intensities in the RA SF could have possible implications for diagnostics and therapy.


Assuntos
Artrite Reumatoide , Vesículas Extracelulares , Osteoartrite , Artrite Reumatoide/diagnóstico , Humanos , Ácido Hialurônico , Líquido Sinovial
19.
Breast Cancer Res Treat ; 185(1): 63-72, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32948994

RESUMO

PURPOSE: The aim of this study was to investigate the prognostic impact of two systemic inflammatory markers, the neutrophil-to-lymphocyte ratio (NLR) and the monocyte-to-lymphocyte ratio (MLR), and their possible predictive role regarding the efficacy of adjuvant trastuzumab, in 209 early breast cancer cases, 107 of which were HER2-positive. METHODS: Baseline NLR and MLR values were divided into two groups, high and low, according to cut-off-points determined from the ROC curve (2.2 for NLR and 0.22 for MLR). Cox's model was utilized for survival analyses. RESULTS: High NLR and MLR correlated with poor overall survival (OS) and breast cancer specific survival (BCSS) among all the patients (p ≤ 0.030). Among the HER2+ patients whose adjuvant treatment did not include trastuzumab (n = 64), the survival rates were remarkably lower in patients with a high NLR as compared to those with low; 31% vs. 71% for OS and 42% vs. 74% for BCSS (p ≤ 0.014). Similarly, high MLR correlated with poor survival among these patients (p ≤ 0.020). On the contrary, among the patients who had received adjuvant trastuzumab (n = 43), NLR or MLR did not correlate with survival. Furthermore, trastuzumab was beneficial for the HER2+ patients with high NLR/MLR, while the survival of the HER2+ patients with low NLR/MLR was good irrespective if they received adjuvant trastuzumab. CONCLUSIONS: Our results suggest that trastuzumab modulates the systemic inflammatory conditions and overcomes the poor prognostic impact of high NLR/MLR. This finding may also provide a rationale for combining trastuzumab with immuno-oncological treatments in HER2+ breast cancer.


Assuntos
Neoplasias da Mama , Neutrófilos , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Linfócitos , Monócitos , Prognóstico , Estudos Retrospectivos
20.
Cells ; 9(11)2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203136

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-ß (Aß) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of ß-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aß. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aß in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a large extent, via the autophagosomal pathway and that the downregulation of SEPTIN5 enhanced autophagosomal activity in neuronal cells as indicated by altered levels of key autophagosomal markers. Collectively, our data suggest that the downregulation of SEPTIN5 increases the autophagy-mediated degradation of APP CTFs, leading to reduced levels of Aß in neuronal cells.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Septinas/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Endocitose/fisiologia , Humanos , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Transporte Proteico/fisiologia , Septinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA