Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Glob Chang Biol ; 30(6): e17361, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822568

RESUMO

Our current planetary crisis, including multiple jointly acting factors of global change, moves the need for effective ecosystem restoration center stage and compels us to explore unusual options. We here propose exploring combinatorial approaches to restoration practices: management practices are drawn at random and combined from a locally relevant pool of possible management interventions, thus creating an experimental gradient in the number of interventions. This will move the current degree of interventions to higher dimensionality, opening new opportunities for unlocking unknown synergistic effects. Thus, the high dimensionality of global change (multiple jointly acting factors) would be more effectively countered by similar high-dimensionality in solutions. In this concept, regional restoration hubs play an important role as guardians of locally relevant information and sites of experimental exploration. Data collected from such studies could feed into a global database, which could be used to learn about general principles of combined restoration practices, helping to refine future experiments. Such combinatorial approaches to exploring restoration intervention options may be our best hope yet to achieve decisive progress in ecological restoration at the timescale needed to mitigate and reverse the most severe losses caused by global environmental change.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Recuperação e Remediação Ambiental/métodos , Ecologia/métodos , Mudança Climática
2.
Nat Commun ; 15(1): 3321, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637578

RESUMO

Trait-based frameworks are promising tools to understand the functional consequences of community shifts in response to environmental change. The applicability of these tools to soil microbes is limited by a lack of functional trait data and a focus on categorical traits. To address this gap for an important group of soil microorganisms, we identify trade-offs underlying a fungal economics spectrum based on a large trait collection in 28 saprobic fungal isolates, derived from a common grassland soil and grown in culture plates. In this dataset, ecologically relevant trait variation is best captured by a three-dimensional fungal economics space. The primary explanatory axis represents a dense-fast continuum, resembling dominant life-history trade-offs in other taxa. A second significant axis reflects mycelial flexibility, and a third one carbon acquisition traits. All three axes correlate with traits involved in soil carbon cycling. Since stress tolerance and fundamental niche gradients are primarily related to the dense-fast continuum, traits of the 2nd (carbon-use efficiency) and especially the 3rd (decomposition) orthogonal axes are independent of tested environmental stressors. These findings suggest a fungal economics space which can now be tested at broader scales.


Assuntos
Micélio , Solo , Fungos , Carbono , Microbiologia do Solo , Ecossistema
4.
Phytochemistry ; 221: 114040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428627

RESUMO

Plants react to drought stress with numerous changes including altered emissions of volatile organic compounds (VOC) from leaves, which provide protection against oxidative tissue damage and mediate numerous biotic interactions. Despite the share of grasslands in the terrestrial biosphere, their importance as carbon sinks and their contribution to global biodiversity, little is known about the influence of drought on VOC profiles of grassland species. Using coupled gas chromatography-mass spectrometry, we analysed the odorants emitted by 22 European grassland species exposed to an eight-week-lasting drought treatment (DT; 30% water holding capacity, WHC). We focused on the odorants emitted during the light phase from whole plant shoots in their vegetative stage. Emission rates were standardised to the dry weight of each shoot. Well-watered (WW) plants (70% WHC) served as control. Drought-induced significant changes included an increase in total emission rates of plant VOC in six and a decrease in three species. Diverging effects on the number of emitted VOC (chemical richness) or on the Shannon diversity of the VOC profiles were detected in 13 species. Biosynthetic pathways-targeted analyses revealed 13 species showing drought-induced higher emission rates of VOC from one, two, three, or four major biosynthetic pathways (lipoxygenase, shikimate, mevalonate and methylerythritol phosphate pathway), while six species exhibited reduced emission rates from one or two of these pathways. Similarity trees of odorant profiles and their drought-induced changes based on a biosynthetically informed distance metric did not match species phylogeny. However, a phylogenetic signal was detected for the amount of terpenoids released by the studied species under WW and DT conditions. A comparative analysis of emission rates of single compounds released by WW and DT plants revealed significant VOC profile dissimilarities in four species only. The moderate drought-induced changes in the odorant emissions of grassland species are discussed with respect to their impact on trophic interactions across the food web. (294 words).


Assuntos
Pradaria , Compostos Orgânicos Voláteis , Odorantes , Compostos Orgânicos Voláteis/metabolismo , Secas , Filogenia , Plantas/metabolismo , Água/metabolismo
5.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38486354

RESUMO

Litter decomposition is a key ecosystem process, relevant for the release and storage of nutrients and carbon in soil. Soil fungi are one of the dominant drivers of organic matter decomposition, but fungal taxa differ substantially in their functional ability to decompose plant litter. Knowledge is mostly based on observational data and subsequent molecular analyses and in vitro studies have been limited to forest ecosystems. In order to better understand functional traits of saprotrophic soil fungi in grassland ecosystems, we isolated 31 fungi from a natural grassland and performed several in vitro studies testing for i) leaf and wood litter decomposition, ii) the ability to use carbon sources of differing complexity, iii) the enzyme repertoire. Decomposition strongly varied among phyla and isolates, with Ascomycota decomposing the most and Mucoromycota decomposing the least. The phylogeny of the fungi and their ability to use complex carbon were the most important predictors for decomposition. Our findings show that it is crucial to understand the role of individual members and functional groups within the microbial community. This is an important way forward to understand the role of microbial community composition for the prediction of litter decomposition and subsequent potential carbon storage in grassland soils.


Assuntos
Ascomicetos , Microbiota , Ecossistema , Microbiologia do Solo , Fungos , Plantas , Solo , Folhas de Planta/microbiologia , Carbono
6.
Ecol Lett ; 27(3): e14397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430051

RESUMO

Generative artificial intelligence (AI) models will have broad impacts on society including the scientific enterprise; ecology and environmental science will be no exception. Here, we discuss the potential opportunities and risks of advanced generative AI for visual material (images and video) for the science of ecology and the environment itself. There are clearly opportunities for positive impacts, related to improved communication, for example; we also see possibilities for ecological research to benefit from generative AI (e.g., image gap filling, biodiversity surveys, and improved citizen science). However, there are also risks, threatening to undermine the credibility of our science, mostly related to actions of bad actors, for example in terms of spreading fake information or committing fraud. Risks need to be mitigated at the level of government regulatory measures, but we also highlight what can be done right now, including discussing issues with the next generation of ecologists and transforming towards radically open science workflows.


Assuntos
Inteligência Artificial , Biodiversidade
7.
Environ Int ; 185: 108508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377723

RESUMO

Microplastics (MPs), including conventional hard-to-biodegrade petroleum-based and faster biodegradable plant-based ones, impact soil structure and microbiota in turn affecting the biodiversity and functions of terrestrial ecosystems. Herein, we investigated the effects of conventional and biodegradable MPs on aggregate distribution and microbial community composition in microhabitats at the aggregate scale. Two MP types (polyethylene (PE) and polylactic acid (PLA) with increasing size (50, 150, and 300 µm)) were mixed with a silty loam soil (0-20 cm) at a ratio of 0.5 % (w/w) in a rice-wheat rotation system in a greenhouse under 25 °C for one year. The effects on aggregation, bacterial communities and their co-occurrence networks were investigated as a function of MP aggregate size. Conventional and biodegradable MPs generally had similar effects on soil aggregation and bacterial communities. They increased the proportion of microaggregates from 17 % to 32 %, while reducing the macroaggregates from 84 % to 68 %. The aggregate stability decreased from 1.4 mm to 1.0-1.1 mm independently of MP size due to the decline in the binding agents gluing soil particles (e.g., microbial byproducts and proteinaceous substances). MP type and amount strongly affected the bacterial community structure, accounting for 54 % of the variance. Due to less bioavailable organics, bacterial community composition within microaggregates was more sensitive to MPs addition compared to macroaggregates. Co-occurrence network analysis revealed that MPs exacerbated competition among bacteria and increased the complexity of bacterial networks. Such effects were stronger for PE than PLA MPs due to the higher persistence of PE in soils. Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Gemmatimonadetes were the keystone taxa in macroaggregates, while Actinobacteria and Chloroflexi were the keystone taxa in microaggregates. Proteobacteria, Actinobacteria, and Chloroflexi were the most sensitive bacteria to MPs addition. Overall, both conventional and biodegradable MPs reduced the portion of large and stable aggregates, altering bacterial community structures and keystone taxa, and consequently, the functions.


Assuntos
Chloroflexi , Microbiota , Microplásticos , Plásticos , Solo/química , Microbiologia do Solo , Poliésteres , Bactérias , Polietileno
8.
Environ Sci Technol ; 58(13): 5821-5831, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38416534

RESUMO

Microplastics (MPs) contamination presents a significant global environmental challenge, with its potential to influence soil carbon (C) dynamics being a crucial aspect for understanding soil C changes and global C cycling. This meta-analysis synthesizes data from 110 peer-reviewed publications to elucidate the directional, magnitude, and driving effects of MPs exposure on soil C dynamics globally. We evaluated the impacts of MPs characteristics (including type, biodegradability, size, and concentration), soil properties (initial pH and soil organic C [SOC]), and experimental conditions (such as duration and plant presence) on various soil C components. Key findings included the significant promotion of SOC, dissolved organic C, microbial biomass C, and root biomass following MPs addition to soils, while the net photosynthetic rate was reduced. No significant effects were observed on soil respiration and shoot biomass. The study highlights that the MPs concentration, along with other MPs properties and soil attributes, critically influences soil C responses. Our results demonstrate that both the nature of MPs and the soil environment interact to shape the effects on soil C cycling, providing comprehensive insights and guiding strategies for mitigating the environmental impact of MPs.


Assuntos
Plásticos , Solo , Microplásticos , Fotossíntese , Carbono , Ecossistema
9.
Environ Int ; 185: 108496, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359549

RESUMO

Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.


Assuntos
Microbioma Gastrointestinal , Poluentes Químicos da Água , Edulcorantes/toxicidade , Edulcorantes/análise , Edulcorantes/metabolismo , Solo , Poluentes Químicos da Água/análise , Ciclamatos/análise , Amino Açúcares , Nucleotídeos
10.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365242

RESUMO

An estimated 258 million tons of plastic enter the soil annually. Joining persistent types of microplastic (MP), there will be an increasing demand for biodegradable plastics. There are still many unknowns about plastic pollution by either type, and one large gap is the fate and composition of dissolved organic matter (DOM) released from MPs as well as how they interact with soil microbiomes in agricultural systems. In this study, polyethylene MPs, photoaged to different degrees, and virgin polylactic acid MPs were added to agricultural soil at different levels and incubated for 100 days to address this knowledge gap. We find that, upon MP addition, labile components of low aromaticity were degraded and transformed, resulting in increased aromaticity and oxidation degree, reduced molecular diversity, and changed nitrogen and sulfur contents of soil DOM. Terephthalate, acetate, oxalate, and L-lactate in DOM released by polylactic acid MPs and 4-nitrophenol, propanoate, and nitrate in DOM released by polyethylene MPs were the major molecules available to the soil microbiomes. The bacteria involved in the metabolism of DOM released by MPs are mainly concentrated in Proteobacteria, Actinobacteriota, and Bacteroidota, and fungi are mainly in Ascomycota and Basidiomycota. Our study provides an in-depth understanding of the microbial transformation of DOM released by MPs and its effects of DOM evolution in agricultural soils.


Assuntos
Matéria Orgânica Dissolvida , Solo , Microplásticos , Plásticos , Polietileno
11.
Environ Sci Technol ; 58(9): 4060-4069, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331396

RESUMO

Microplastic pollution, an emerging pollution issue, has become a significant environmental concern globally due to its ubiquitous, persistent, complex, toxic, and ever-increasing nature. As a multifaceted and diverse suite of small plastic particles with different physicochemical properties and associated matters such as absorbed chemicals and microbes, future research on microplastics will need to comprehensively consider their multidimensional attributes. Here, we introduce a novel, conceptual framework of the "microplastome", defined as the entirety of various plastic particles (<5 mm), and their associated matters such as chemicals and microbes, found within a sample and its overall environmental and toxicological impacts. As a novel concept, this paper aims to emphasize and call for a collective quantification and characterization of microplastics and for a more holistic understanding regarding the differences, connections, and effects of microplastics in different biotic and abiotic ecosystem compartments. Deriving from this lens, we present our insights and prospective trajectories for characterization, risk assessment, and source apportionment of microplastics. We hope this new paradigm can guide and propel microplastic research toward a more holistic era and contribute to an informed strategy for combating this globally important environmental pollution issue.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Ecossistema , Estudos Prospectivos , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade
12.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341437

RESUMO

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Agricultura , Solo
14.
Nat Commun ; 15(1): 327, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184663

RESUMO

Soil fungi are a key constituent of global biodiversity and play a pivotal role in agroecosystems. How arable farming affects soil fungal biogeography and whether it has a disproportional impact on rare taxa is poorly understood. Here, we used the high-resolution PacBio Sequel targeting the entire ITS region to investigate the distribution of soil fungi in 217 sites across a 3000 km gradient in Europe. We found a consistently lower diversity of fungi in arable lands than grasslands, with geographic locations significantly impacting fungal community structures. Prevalent fungal groups became even more abundant, whereas rare groups became fewer or absent in arable lands, suggesting a biotic homogenization due to arable farming. The rare fungal groups were narrowly distributed and more common in grasslands. Our findings suggest that rare soil fungi are disproportionally affected by arable farming, and sustainable farming practices should protect rare taxa and the ecosystem services they support.


Assuntos
Ecossistema , Solo , Agricultura , Europa (Continente) , Fazendas
15.
Environ Sci Pollut Res Int ; 31(8): 11995-12004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38227255

RESUMO

Natural systems are under increasing pressure by a range of anthropogenic global change factors. Pesticides represent a nearly ubiquitously occurring global change factor and have the potential to affect soil functions. Currently the use of synthetic pesticides is at an all-time high with over 400 active ingredients being utilized in the EU alone, with dozens of these pesticides occurring concurrently in soil. However, we presently do not understand the impacts of the potential interaction of multiple pesticides when applied simultaneously. Using soil collected from a local grassland, we utilize soil microcosms to examine the role of both rate of change and number of a selection of ten currently used pesticides on soil processes, including litter decomposition, water stable aggregates, aggregate size, soil pH, and EC. Additionally, we used null models to enrich our analyses to examine potential patterns caused by interactions between pesticide treatments. We find that both gradual and abrupt pesticide application have negative consequences for soil processes. Notably, pesticide number plays a significant role in affecting soil health. Null models also reveal potential synergistic behavior between pesticides which can further their consequences on soil processes. Our research highlights the complex impacts of pesticides, and the need for environmental policy to address the threats posed by pesticides.


Assuntos
Praguicidas , Poluentes do Solo , Praguicidas/análise , Solo/química , Agricultura , Poluentes do Solo/química , Água
16.
Trends Plant Sci ; 29(2): 210-218, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37394309

RESUMO

Artificial intelligence (AI) is advancing rapidly and continually evolving in various fields. Recently, the release of ChatGPT has sparked significant public interest. In this study, we revisit the '100 Important Questions Facing Plant Science' by leveraging ChatGPT as a valuable tool for generating thought-provoking questions relevant to plant science. These questions primarily revolve around the utilization of plants in product development, understanding plant mechanisms, plant-environment interactions, and enhancing plant traits, with an emphasis on sustainable product development. While ChatGPT may not capture certain crucial aspects highlighted by scientists, it offers valuable insights into the questions generated by experts. Our analysis demonstrates that ChatGPT can be cautiously employed as a supportive tool to facilitate, streamline, and expedite specific tasks in plant science.


Assuntos
Inteligência Artificial , Idioma , Fenótipo
17.
Nat Rev Microbiol ; 22(2): 64-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697003

RESUMO

Understanding the effects of plastic pollution in terrestrial ecosystems is a priority in environmental research. A central aspect of this suite of pollutants is that it entails particles, in addition to chemical compounds, and this makes plastic quite different from the vast majority of chemical environmental pollutants. Particles can be habitats for microbial communities, and plastics can be a source of chemical compounds that are released into the surrounding environment. In the aquatic literature, the term 'plastisphere' has been coined to refer to the microbial community colonizing plastic debris; here, we use a definition that also includes the immediate soil environment of these particles to align the definition with other concepts in soil microbiology. First, we highlight major differences in the plastisphere between aquatic and soil ecosystems, then we review what is currently known about the soil plastisphere, including the members of the microbial community that are enriched, and the possible mechanisms underpinning this selection. Then, we focus on outlining future prospects for research on the soil plastisphere.


Assuntos
Poluentes Ambientais , Microbiota , Plásticos , Bactérias , Solo
18.
Plant J ; 117(6): 1781-1785, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37873939

RESUMO

Plants and ecosystems worldwide are exposed to a wide range of chemical, physical, and biological factors of global change, many of which act concurrently. As bringing order to the array of factors is required in order to generate an enhanced understanding of simultaneous impacts, classification schemes have been developed. One such classification scheme is dedicated to capturing the different targets of global change factors along the ecological hierarchy. We build on this pioneering work, and refine the conceptual framework in several ways, focusing on plants and terrestrial systems: (i) we more strictly define the target level of the hierarchy, such that every factor typically has just one target level, and not many; (ii) we include effects above the level of the community, that is, there are effects also at the ecosystem scale that cannot be reduced to any level below this; (iii) we introduce the level of the landscape to capture certain land use change effects while abandoning the level below the individual. We discuss how effects can propagate along the levels of the ecological hierarchy, upwards and downwards, presenting opportunities for explaining non-additivity of effects of multiple factors. We hope that this updated conceptual framework will help inform the next generation of plant-focused global change experiments, specifically aimed at non-additivity of effects at the confluence of many factors.


Assuntos
Ecossistema
19.
Nat Rev Microbiol ; 22(4): 226-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37863969

RESUMO

In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.


Assuntos
Microbiota , Solo , Solo/química , Carbono , Microbiologia do Solo , Nitrogênio/análise
20.
Environ Sci Technol ; 58(1): 231-241, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128904

RESUMO

Despite the extensive global consumption of architectural paint, the toxicological effects of aged exterior paint particles on terrestrial biota remain largely uncharacterized. Herein, we assessed the toxic effect of aged paint particles on soil environments using the nematode Caenorhabditis elegans (C. elegans) as a test organism. Various types of paint particles were generated by fragmentation and sequential sieving (500-1000, 250-500, 100-250, 50-100, 20-50 µm) of paint coatings collected from two old residential areas. The paint particles exerted different levels of toxicity, as indicated by a reduction in the number of C. elegans offspring, depending on their size, color, and layer structure. These physical characteristics were found to be closely associated with the chemical heterogeneity of additives present in the paint particles. Since the paint particle sizes were larger than what C. elegans typically consume, we attributed the toxicity to leachable additives present in the paint particles. To assess the toxicity of these leachable additives, we performed sequential washings of the paint particles with distilled water and ethanol. Ethanol washing of the paint particles significantly reduced the soil toxicity of the hydrophobic additives, indicating their potential environmental risk. Liquid chromatography-mass spectrometry analysis of the ethanol leachate revealed the presence of alkyl amines, which exhibited a high correlation with the toxicity of the paint particles. Further toxicity testing using an alkyl amine standard demonstrated that a paint particle concentration of 1.2% in soil could significantly reduce the number of C. elegans offspring. Our findings provide insights into the potential hazards posed by aged paint particles and their leachable additives in the terrestrial environment.


Assuntos
Caenorhabditis elegans , Solo , Animais , Solo/química , Ecossistema , Pintura , Etanol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA