Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 12(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998805

RESUMO

Traumatic peripheral nerve injuries (PNI), present with symptoms ranging from pain to loss of motor and sensory function. Difficulties in intraoperative visual assessment of nerve functional status necessitate intraoperative nerve conduction studies (INCSs) by neurosurgeons and neurologists to determine the presence of functioning axons in the zone of a PNI. This process, also referred to as nerve "inching", uses a set of stimulating and recording electrode hooks to lift the injured nerve from the surrounding surgical field and to determine whether an electrical stimulus can travel through the zone of injury. However, confounding electrical signal artifacts can arise from the current workflow and electrode design, particularly from the mandatory lifting of the nerve, complicating the definitive assessment of nerve function and neurosurgical treatment decision-making. The objective of this study is to describe the design process and verification testing of our group's newly designed stimulating and recording electrodes that do not require the lifting or displacement of the injured nerve during INCSs. Ergonomic in vivo analysis of the device within a porcine model demonstrated successful intraoperative manipulation of the device, while quantitative nerve action potential (NAP) signal analysis with an ex vivo simulated "inching" procedure on healthy non-human primate nerve tissue demonstrated excellent reproducible recorded NAP fidelity and the absence of NAP signal artifacts at all points of recording. Lastly, electrode pullout force testing determined maximum forces of 0.43 N, 1.57 N, and 3.61 N required to remove the device from 2 mm, 5 mm, and 1 cm nerve models, respectively, which are well within established thresholds for nerve safety. These results suggest that these new electrodes can safely and successfully perform accurate PNI assessment without the presence of artifacts, with the potential to improve the INCS standard of care while remaining compatible with currently used neurosurgical technology, infrastructure, and clinical workflows.

2.
Pain ; 164(6): 1321-1331, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607284

RESUMO

ABSTRACT: Transient voltage-gated sodium currents are essential for the initiation and conduction of action potentials in neurons and cardiomyocytes. The amplitude and duration of sodium currents are tuned by intracellular fibroblast growth factor homologous factors (FHFs/iFGFs) that associate with the cytoplasmic tails of voltage-gated sodium channels (Na v s), and genetic ablation of Fhf genes disturbs neurological and cardiac functions. Among reported phenotypes, Fhf2null mice undergo lethal hyperthermia-induced cardiac conduction block attributable to the combined effects of FHF2 deficiency and elevated temperature on the cardiac sodium channel (Na v 1.5) inactivation rate. Fhf2null mice also display a lack of heat nociception, while retaining other somatosensory capabilities. Here, we use electrophysiological and computational methods to show that the heat nociception deficit can be explained by the combined effects of elevated temperature and FHF2 deficiency on the fast inactivation gating of Na v 1.7 and tetrodotoxin-resistant sodium channels expressed in dorsal root ganglion C fibers. Hence, neurological and cardiac heat-associated deficits in Fhf2null mice derive from shared impacts of FHF deficiency and temperature towards Na v inactivation gating kinetics in distinct tissues.


Assuntos
Temperatura Alta , Nociceptividade , Animais , Camundongos , Gânglios Espinais/metabolismo , Sódio/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Temperatura , Tetrodotoxina/farmacologia
3.
Elife ; 102021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891544

RESUMO

In humans, intradermal administration of ß-alanine (ALA) and bovine adrenal medulla peptide 8-22 (BAM8-22) evokes the sensation of itch. Currently, it is unknown which human dorsal root ganglion (DRG) neurons express the receptors of these pruritogens, MRGPRD and MRGPRX1, respectively, and which cutaneous afferents these pruritogens activate in primate. In situ hybridization studies revealed that MRGPRD and MRGPRX1 are co-expressed in a subpopulation of TRPV1+ human DRG neurons. In electrophysiological recordings in nonhuman primates (Macaca nemestrina), subtypes of polymodal C-fiber nociceptors are preferentially activated by ALA and BAM8-22, with significant overlap. When pruritogens ALA, BAM8-22, and histamine, which activate different subclasses of C-fiber afferents, are administered in combination, human volunteers report itch and nociceptive sensations similar to those induced by a single pruritogen. Our results provide evidence for differences in pruriceptive processing between primates and rodents, and do not support the spatial contrast theory of coding of itch and pain.


Assuntos
Gânglios Espinais/fisiopatologia , Nociceptores/fisiologia , Fragmentos de Peptídeos/efeitos adversos , Prurido/fisiopatologia , Receptores Acoplados a Proteínas G/genética , beta-Alanina/efeitos adversos , Adulto , Animais , Feminino , Gânglios Espinais/efeitos dos fármacos , Histamina/administração & dosagem , Humanos , Macaca nemestrina/fisiologia , Masculino , Pessoa de Meia-Idade , Nociceptores/efeitos dos fármacos , Prurido/induzido quimicamente , Receptores Acoplados a Proteínas G/metabolismo , Adulto Jovem
4.
J Physiol ; 599(5): 1595-1610, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369733

RESUMO

KEY POINTS: C-nociceptors are generally assumed to have a low maximum discharge frequency of 10-30 Hz. However, only mechano-insensitive 'silent' C-nociceptors cannot follow electrical stimulation at 5 Hz (75 pulses) whereas polymodal C-nociceptors in the pig follow stimulation at up to 100 Hz without conduction failure. Sensitization by nerve growth factor increases the maximum following frequency of 'silent' nociceptors in pig skin and might thereby contribute in particular to intense pain sensations in chronic inflammation. A distinct class of C-nociceptors with mechanical thresholds >150 mN resembles 'silent' nociceptors at low stimulation frequencies in pigs and humans, but is capable of 100 Hz discharge and thus is suited to encode painfulness of noxious mechanical stimuli. ABSTRACT: Using extracellular single-fibre recordings from the saphenous nerve in pig in vivo, we investigated peak following frequencies (5-100 Hz) in different classes of C-nociceptors and their modulation by nerve growth factor. Classes were defined by sensory (mechano-sensitivity) and axonal characteristics (activity dependent slowing of conduction, ADS). Mechano-insensitive C-nociceptors (CMi) showed the highest ADS (34% ± 8%), followed only 66% ± 27% of 75 pulses at 5 Hz and increasingly blocked conduction at higher frequencies. Three weeks following intradermal injections of nerve growth factor, peak following frequency increased specifically in the sensitized mechano-insensitive nociceptors (20% ± 16% to 38% ± 23% response rate after 72 pulses at 100 Hz). In contrast, untreated polymodal nociceptors with moderate ADS (15.2% ± 10.2%) followed stimulation frequencies of 100 Hz without conduction failure (98.5% ± 6%). A distinct class of C-nociceptors was exclusively sensitive to strong forces above 150 mN. This class had a high ADS (27.2% ± 7.6%), but displayed almost no propagation failure even at 100 Hz stimulation (84.7% ± 17%). Also, among human mechanosensitive nociceptors (n = 153) those with thresholds above 150 mN (n = 5) showed ADS typical of silent nociceptors. C-fibres with particularly high mechanical thresholds and high following frequency form a distinct nociceptor class ideally suited to encode noxious mechanical stimulation under normal conditions when regular silent nociceptors are inactive. Sensitization by nerve growth factor increases maximum discharge frequency of silent nociceptors, thereby increasing the frequency range beyond their physiological limit, which possibly contributes to excruciating pain under inflammatory conditions.


Assuntos
Fibras Nervosas Amielínicas , Nociceptores , Animais , Axônios , Estimulação Elétrica , Dor , Pele , Suínos
5.
J Clin Monit Comput ; 35(6): 1467-1475, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33146861

RESUMO

Intraoperative nerve action potential (NAP) recording permits direct study of an injured nerve for functional assessment of lesions in continuity. Stimulus artifact contamination often hampers NAP recording and interferes with its interpretation. In the present study, we evaluated the artifact reduction method using alternating polarity in peripheral nerve recording. Our study was conducted under controlled conditions in laboratory animals. NAPs were recorded from surgically exposed median or ulnar nerves. For the artifact reduction method with alternating polarity, two sequential recordings, one with normal and one with reversed stimulus polarity, were acquired and the signals from this recording pair were averaged. Simulation was also performed to further evaluate the effects of alternating polarity on the waveforms. The results are as follows: First, we found that this method worked for recordings with unsaturated electrical stimulus artifacts. Second, slightly unequal latencies occurred in an NAP pair, and this inequality contributed to a minimal loss of NAP amplitudes when averaging the two recordings. Third, perfect artifact cancelation and minimal signal loss were also demonstrated by simulation. Finally, we applied the method during nerve inching and demonstrated its usefulness in intraoperative NAP recordings as the method made the recording more resilient to short conduction distances. Thus, our findings demonstrate that this artifact reduction method can be used as a supplemental tool together with our previously described bridge grounding technique or the nonlifting nerve recording configuration to further improve intraoperative peripheral nerve recording. The method can be applied in clinical settings.


Assuntos
Artefatos , Nervos Periféricos , Potenciais de Ação , Animais , Potenciais Evocados
7.
Pain ; 161(9): 1976-1982, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32694387

RESUMO

ABSTRACT: The current International Association for the Study of Pain (IASP) definition of pain as "An unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage" was recommended by the Subcommittee on Taxonomy and adopted by the IASP Council in 1979. This definition has become accepted widely by health care professionals and researchers in the pain field and adopted by several professional, governmental, and nongovernmental organizations, including the World Health Organization. In recent years, some in the field have reasoned that advances in our understanding of pain warrant a reevaluation of the definition and have proposed modifications. Therefore, in 2018, the IASP formed a 14-member, multinational Presidential Task Force comprising individuals with broad expertise in clinical and basic science related to pain, to evaluate the current definition and accompanying note and recommend whether they should be retained or changed. This review provides a synopsis of the critical concepts, the analysis of comments from the IASP membership and public, and the committee's final recommendations for revisions to the definition and notes, which were discussed over a 2-year period. The task force ultimately recommended that the definition of pain be revised to "An unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage," and that the accompanying notes be updated to a bulleted list that included the etymology. The revised definition and notes were unanimously accepted by the IASP Council early this year.


Assuntos
Dor , Humanos , Dor/diagnóstico
8.
J Invest Dermatol ; 140(1): 203-211.e4, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276675

RESUMO

Neurophysiological mechanisms leading to chronicity of pruritus are not yet fully understood and it is not known whether these mechanisms diverge between different underlying diseases of chronic pruritus (CP). This study aimed to detect such mechanisms in CP of various origins. A total of 120 patients with CP of inflammatory origin (atopic dermatitis), neuropathic origin (brachioradial pruritus), and chronic prurigo of nodular type, the latter as a model for chronic scratching, as well as 40 matched healthy controls participated in this study. Stimulation with cowhage induced a more intensive itch sensation compared with stimulation with other substances in all patient groups but not in healthy controls, arguing for sensitization of cutaneous mechano- and heat-sensitive C-fibers in CP. All patient groups showed a decreased intraepidermal nerve fiber density compared with controls. A decreased condition pain modulation effect was observed in all patient groups compared with controls, suggesting a reduced descending inhibitory system in CP. In sum, CP of different etiologies showed a mixed peripheral and central pattern of neuronal alterations, which might contribute to the chronicity of pruritus with no differences between pruritus entities. Our findings may contribute to the development of future treatment strategies targeting these pathomechanisms.


Assuntos
Dermatite Atópica/diagnóstico , Fibras Nervosas/patologia , Prurigo/diagnóstico , Prurido/diagnóstico , Pele/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alérgenos/imunologia , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucuna/imunologia , Dor , Sistema Nervoso Periférico , Adulto Jovem
9.
J Neurosurg ; : 1-10, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31419790

RESUMO

OBJECTIVE: Intraoperative nerve action potential (NAP) recording is a useful tool for surgeons to guide decisions on surgical approaches during nerve repair surgeries. However, current methods remain technically challenging. In particular, stimulus artifacts that contaminate or mask the NAP and therefore impair the interpretation of the recording are a common problem. The authors' goal was to improve intraoperative NAP recording techniques by revisiting the methods in an experimental setting. METHODS: First, NAPs were recorded from surgically exposed peripheral nerves in monkeys. For the authors to test their assumptions about observed artifacts, they then employed a simple model system. Finally, they applied their insights to clinical cases in the operating room. RESULTS: In monkey peripheral nerve recordings, large stimulus artifacts obscured NAPs every time the nerve segment (length 3-5 cm) was lifted up from the surrounding tissue, and NAPs could not be recorded. Artifacts were suppressed, and NAPs emerged when "bridge grounding" was applied, and this allowed the NAPs to be recorded easily and reliably. Tests in a model system suggested that exaggerated stimulus artifacts and unmasking of NAPs by bridge grounding are related to a loop effect that is created by lifting the nerve. Consequently, clean NAPs were acquired in "nonlifting" recordings from monkey peripheral nerves. In clinical cases, bridge grounding efficiently unmasked intraoperative NAP recordings, validating the authors' principal concept in the clinical setting and allowing effective neurophysiological testing in the operating room. CONCLUSIONS: Technical challenges of intraoperative NAP recording are embedded in the current methods that recommend lifting the nerve from the tissue bed, thereby exaggerating stimulus artifacts by a loop effect. Better results can be achieved by performing nonlifting nerve recording or by applying bridge grounding. The authors not only tested their findings in an animal model but also applied them successfully in clinical practice.

10.
Anesthesiology ; 128(5): 967-983, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29334500

RESUMO

BACKGROUND: The current study used recombinant herpes simplex virus type I to increase expression of µ-opiate receptors and the opioid ligand preproenkephalin in peripheral nerve fibers in a mouse model of neuropathic pain. It was predicted that viral vector delivery of a combination of genes encoding the µ-opioid receptor and preproenkephalin would attenuate neuropathic pain and enhance opioid analgesia. The behavioral effects would be paralleled by changes in response properties of primary afferent neurons. METHODS: Recombinant herpes simplex virus type 1 containing cDNA sequences of the µ-opioid receptor, human preproenkephalin, a combination, or Escherichia coli lacZ gene marker (as a control) was used to investigate the role of peripheral opioids in neuropathic pain behaviors. RESULTS: Inoculation with the µ-opioid receptor viral vector (n = 13) reversed mechanical allodynia and thermal hyperalgesia and produced leftward shifts in loperamide (ED50 = 0.6 ± 0.2 mg/kg vs. ED50 = 0.9 ± 0.2 mg/kg for control group, n = 8, means ± SD) and morphine dose-response curves (ED50 = 0.3 ± 0.5 mg/kg vs. ED50 = 1.1 ± 0.1 mg/kg for control group). In µ-opioid receptor viral vector inoculated C-fibers, heat-evoked responses (n = 12) and ongoing spontaneous activity (n = 18) were decreased after morphine application. Inoculation with both µ-opioid receptor and preproenkephalin viral vectors did not alter mechanical and thermal responses. CONCLUSIONS: Increasing primary afferent expression of opioid receptors can decrease neuropathic pain-associated behaviors and increase systemic opioid analgesia through inhibition of peripheral afferent fiber activity.


Assuntos
Analgésicos Opioides/farmacologia , Encefalinas/fisiologia , Neuralgia/prevenção & controle , Neurônios Aferentes/fisiologia , Receptores Opioides mu/fisiologia , Analgesia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Herpesvirus Humano 1/genética , Masculino , Camundongos , Morfina/farmacologia , Proteínas Proto-Oncogênicas c-fos/análise , Receptores Opioides mu/análise
11.
J Neurosci ; 37(20): 5204-5214, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28450535

RESUMO

Voltage-gated sodium (NaV) channels are responsible for the initiation and conduction of action potentials within primary afferents. The nine NaV channel isoforms recognized in mammals are often functionally divided into tetrodotoxin (TTX)-sensitive (TTX-s) channels (NaV1.1-NaV1.4, NaV1.6-NaV1.7) that are blocked by nanomolar concentrations and TTX-resistant (TTX-r) channels (NaV1.8 and NaV1.9) inhibited by millimolar concentrations, with NaV1.5 having an intermediate toxin sensitivity. For small-diameter primary afferent neurons, it is unclear to what extent different NaV channel isoforms are distributed along the peripheral and central branches of their bifurcated axons. To determine the relative contribution of TTX-s and TTX-r channels to action potential conduction in different axonal compartments, we investigated the effects of TTX on C-fiber-mediated compound action potentials (C-CAPs) of proximal and distal peripheral nerve segments and dorsal roots from mice and pigtail monkeys (Macaca nemestrina). In the dorsal roots and proximal peripheral nerves of mice and nonhuman primates, TTX reduced the C-CAP amplitude to 16% of the baseline. In contrast, >30% of the C-CAP was resistant to TTX in distal peripheral branches of monkeys and WT and NaV1.9-/- mice. In nerves from NaV1.8-/- mice, TTX-r C-CAPs could not be detected. These data indicate that NaV1.8 is the primary isoform underlying TTX-r conduction in distal axons of somatosensory C-fibers. Furthermore, there is a differential spatial distribution of NaV1.8 within C-fiber axons, being functionally more prominent in the most distal axons and terminal regions. The enrichment of NaV1.8 in distal axons may provide a useful target in the treatment of pain of peripheral origin.SIGNIFICANCE STATEMENT It is unclear whether individual sodium channel isoforms exert differential roles in action potential conduction along the axonal membrane of nociceptive, unmyelinated peripheral nerve fibers, but clarifying the role of sodium channel subtypes in different axonal segments may be useful for the development of novel analgesic strategies. Here, we provide evidence from mice and nonhuman primates that a substantial portion of the C-fiber compound action potential in distal peripheral nerves, but not proximal nerves or dorsal roots, is resistant to tetrodotoxin and that, in mice, this effect is mediated solely by voltage-gated sodium channel 1.8 (NaV1.8). The functional prominence of NaV1.8 within the axonal compartment immediately proximal to its termination may affect strategies targeting pain of peripheral origin.


Assuntos
Axônios/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Condução Nervosa/fisiologia , Nervos Periféricos/fisiologia , Pele/inervação , Tetrodotoxina/administração & dosagem , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiologia , Animais , Axônios/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Macaca nemestrina , Masculino , Canal de Sódio Disparado por Voltagem NAV1.8/efeitos dos fármacos , Fibras Nervosas Amielínicas , Condução Nervosa/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Pele/efeitos dos fármacos , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem
12.
J Neurosurg ; 124(2): 422-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26274997

RESUMO

OBJECTIVE: Percutaneous treatments for trigeminal neuralgia are safe, simple, and effective for achieving good pain control. Procedural risks could be minimized by using noninvasive imaging techniques to improve the placement of the radiofrequency thermocoagulation probe into the trigeminal ganglion. Positioning of a probe is crucial to maximize pain relief and to minimize unwanted side effects, such as denervation in unaffected areas. This investigation examined the use of laser speckle imaging during probe placement in an animal model. METHODS: This preclinical safety study used nonhuman primates, Macaca nemestrina (pigtail monkeys), to examine whether real-time imaging of blood flow in the face during the positioning of a coagulation probe could monitor the location and guide the positioning of the probe within the trigeminal ganglion. RESULTS: Data from 6 experiments in 3 pigtail monkeys support the hypothesis that laser imaging is safe and improves the accuracy of probe placement. CONCLUSIONS: Noninvasive laser speckle imaging can be performed safely in nonhuman primates. Because improved probe placement may reduce morbidity associated with percutaneous rhizotomies, efficacy trials of laser speckle imaging should be conducted in humans.


Assuntos
Eletrocoagulação/métodos , Neuroimagem/métodos , Procedimentos Neurocirúrgicos/métodos , Cirurgia Assistida por Computador/métodos , Neuralgia do Trigêmeo/cirurgia , Animais , Face/anatomia & histologia , Face/irrigação sanguínea , Face/inervação , Feminino , Lasers , Macaca nemestrina , Masculino , Agulhas , Ondas de Rádio , Fluxo Sanguíneo Regional , Rizotomia , Resultado do Tratamento , Gânglio Trigeminal/anatomia & histologia , Gânglio Trigeminal/irrigação sanguínea , Gânglio Trigeminal/cirurgia
14.
Nat Commun ; 5: 4122, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24947823

RESUMO

In primates, C-fibre polymodal nociceptors are broadly classified into two groups based on mechanosensitivity. Here we demonstrate that mechanically sensitive polymodal nociceptors that respond either quickly (QC) or slowly (SC) to a heat stimulus differ in responses to a mild burn, heat sensitization, conductive properties and chemosensitivity. Superficially applied capsaicin and intradermal injection of ß-alanine, an MrgprD agonist, excite vigorously all QCs. Only 40% of SCs respond to ß-alanine, and their response is only half that of QCs. Mechanically insensitive C-fibres (C-MIAs) are ß-alanine insensitive but vigorously respond to capsaicin and histamine with distinct discharge patterns. Calcium imaging reveals that ß-alanine and histamine activate distinct populations of capsaicin-responsive neurons in primate dorsal root ganglion. We suggest that histamine itch and capsaicin pain are peripherally encoded in C-MIAs, and that primate polymodal nociceptive afferents form three functionally distinct subpopulations with ß-alanine responsive QC fibres likely corresponding to murine MrgprD-expressing, non-peptidergic nociceptive afferents.


Assuntos
Potenciais de Ação/fisiologia , Gânglios Espinais/citologia , Temperatura Alta , Fibras Nervosas Amielínicas/fisiologia , Nociceptores/classificação , Nociceptores/fisiologia , Animais , Capsaicina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Histamina/farmacologia , Injeções Intradérmicas , Macaca , Masculino , Nociceptores/efeitos dos fármacos , Estimulação Física , Estatísticas não Paramétricas , Estimulação Química , beta-Alanina/administração & dosagem , beta-Alanina/farmacologia
15.
ILAR J ; 54(3): 296-303, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24615443

RESUMO

Peripheral neuropathy (PN) is the most frequent neurologic complication in individuals infected with human immunodeficiency virus (HIV). It affects over one third of infected patients, including those receiving effective combination antiretroviral therapy. The pathogenesis of HIV-associated peripheral neuropathy (HIV-PN) remains poorly understood. Clinical studies are complicated because both HIV and antiretroviral treatment cause damage to the peripheral nervous system. To study HIV-induced peripheral nervous system (PNS) damage, a unique simian immunodeficiency virus (SIV)/pigtailed macaque model of HIV-PN that enabled detailed morphologic and functional evaluation of the somatosensory pathway throughout disease progression was developed. Studies in this model have demonstrated that SIV induces key pathologic features that closely resemble HIV-induced alterations, including inflammation and damage to the neuronal cell bodies in somatosensory ganglia and decreased epidermal nerve fiber density. Insights generated in the model include: finding that SIV alters the conduction properties of small, unmyelinated peripheral nerves; and that SIV impairs peripheral nerve regeneration. This review will highlight the major findings in the SIV-infected pigtailed macaque model of HIV-PN, and will illustrate the great value of a reliable large animal model to show the pathogenesis of this complex, HIV-induced disorder of the PNS.


Assuntos
Modelos Animais de Doenças , Infecções por HIV/complicações , Macaca mulatta/virologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Vírus da Imunodeficiência Símia , Animais , Gânglios Sensitivos/patologia , Humanos , Regeneração Nervosa/fisiologia , Doenças do Sistema Nervoso Periférico/etiologia
16.
Nat Rev Neurosci ; 15(1): 19-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24356071

RESUMO

Chemicals that are used experimentally to evoke itch elicit activity in diverse subpopulations of cutaneous pruriceptive neurons, all of which also respond to painful stimuli. However, itch is distinct from pain: it evokes different behaviours, such as scratching, and originates from the skin or certain mucosae but not from muscle, joints or viscera. New insights regarding the neurons that mediate the sensation of itch have been gained from experiments in which gene expression has been manipulated in different types of pruriceptive neurons as well as from comparisons between psychophysical measurements of itch and the neuronal discharges and other properties of peripheral and central pruriceptive neurons.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Prurido/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Animais , Humanos , Prurido/psicologia , Transdução de Sinais/fisiologia , Pele/inervação , Pele/fisiopatologia
17.
Pain ; 154(11): 2500-2511, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23891896

RESUMO

Nerve growth factor (NGF) is involved in the long-term sensitization of nociceptive processing linked to chronic pain. Functional and structural ("sprouting") changes can contribute. Thus, humans report long-lasting hyperalgesia to mechanical and electrical stimulation after intradermal NGF injection and NGF-induced sprouting has been reported to underlie cancer bone pain and visceral pain. Using a human-like animal model we investigated the relationship between the structure and function of unmyelinated porcine nociceptors 3 weeks after intradermal NGF treatment. Axonal and sensory characteristics were studied by in vivo single-fiber electrophysiology and immunohistochemistry. C fibers recorded extracellularly were classified based on mechanical response and activity-dependent slowing (ADS) of conduction velocity. Intraepidermal nerve fiber (IENF) densities were assessed by immunohistochemistry in pigs and in human volunteers using the same NGF model. NGF increased conduction velocity and reduced ADS and propagation failure in mechano-insensitive nociceptors. The proportion of mechano-sensitive C nociceptors within NGF-treated skin areas increased from 45.1% (control) to 71% and their median mechanical thresholds decreased from 40 to 20 mN. After NGF application, the mechanical receptive fields of nociceptors increased from 25 to 43 mm(2). At the structural level, however, IENF density was not increased by NGF. In conclusion, intradermal NGF induces long-lasting axonal and mechanical sensitization in porcine C nociceptors that corresponds to hyperalgesia observed in humans. Sensitization is not accompanied by increased IENF density, suggesting that NGF-induced hyperalgesia might not depend on changes in nerve fiber density but could be linked to the recruitment of previously silent nociceptors.


Assuntos
Epiderme/efeitos dos fármacos , Epiderme/inervação , Fibras Nervosas/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Nociceptores/efeitos dos fármacos , Adulto , Animais , Axônios/fisiologia , Canais de Cálcio/metabolismo , Temperatura Baixa , Estimulação Elétrica , Feminino , Imunofluorescência , Humanos , Masculino , Mecanorreceptores/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Fibras Nervosas Amielínicas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Suínos , Canal de Cátion TRPA1 , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Adulto Jovem
19.
PLoS One ; 7(7): e42105, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848720

RESUMO

Loperamide reverses signs of mechanical hypersensitivity in an animal model of neuropathic pain suggesting that peripheral opioid receptors may be suitable targets for the treatment of neuropathic pain. Since little is known about loperamide effects on the responsiveness of primary afferent nerve fibers, in vivo electrophysiological recordings from unmyelinated afferents innervating the glabrous skin of the hind paw were performed in rats with an L5 spinal nerve lesion or sham surgery. Mechanical threshold and responsiveness to suprathreshold stimulation were tested before and after loperamide (1.25, 2.5 and 5 µg in 10 µl) or vehicle injection into the cutaneous receptive field. Loperamide dose-dependently decreased mechanosensitivity in unmyelinated afferents of nerve-injured and sham animals, and this effect was not blocked by naloxone pretreatment. We then investigated loperamide effects on nerve conduction by recording compound action potentials in vitro during incubation of the sciatic nerve with increasing loperamide concentrations. Loperamide dose-dependently decreased compound action potentials of myelinated and unmyelinated fibers (ED50 = 8 and 4 µg/10 µl, respectively). This blockade was not prevented by pre-incubation with naloxone. These results suggest that loperamide reversal of behavioral signs of neuropathic pain may be mediated, at least in part, by mechanisms independent of opioid receptors, most probably by local anesthetic actions.


Assuntos
Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Loperamida/administração & dosagem , Loperamida/farmacologia , Fibras Nervosas/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Pele/inervação , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Hiperalgesia/fisiopatologia , Injeções , Loperamida/uso terapêutico , Masculino , Fenômenos Mecânicos , Fibras Nervosas/patologia , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Neuralgia/fisiopatologia , Nociceptores/patologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Ratos , Ratos Sprague-Dawley
20.
Anesth Analg ; 115(3): 560-71, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22575571

RESUMO

BACKGROUND: Axonal sodium channels are attractive targets for chronic pain treatment, and recent evidence suggests that specific targeting of the slow inactivation of sodium channels (NaV) might exert analgesic effects. Using a human-like animal model, the pig, we compared changes in the conductive properties of different C-fiber classes on acute administration of lidocaine (nonselective NaV blocker) and lacosamide (selective enhancer of NaV slow inactivation). METHODS: Single-fiber extracellular recordings from saphenous nerves were performed. We classified C-fibers according to mechanical responsiveness and amount of activity-dependent slowing (ADS) of conduction velocity. Lidocaine (4 mM; 100 µL), lacosamide (4 mM; 100 µL), or saline was injected intradermally at the stimulation site, and changes of fibers' conductive properties were assessed. RESULTS: Conduction latencies evoked by lidocaine were more prominent in mechanosensitive (5.5%± 2.1%) than in mechano-insensitive nociceptors (2.5% ± 1%), whereas lacosamide increased conduction latencies to a greater extent in the mechano-insensitive (3% ± 1%) than in mechanosensitive C-nociceptors (2% ± 0.9%). Lidocaine, but not lacosamide, increased electrical thresholds in all mechanosensitive, but not in the mechano-insensitive, C-fibers. Lacosamide blocked conduction and, in addition, reduced ADS in mechano-insensitive nociceptors significantly more than in mechanosensitive nociceptors (ΔADS: 2.4% ± 0.5% vs 1.6% ± 0.5%), whereas lidocaine had opposite effects. Saline had no significant effect on the conductive properties of C-fibers. CONCLUSION: Local application of test compounds in pig skin allows for functional assessment of steady-state and use-dependent modulation of sodium channels in nociceptive and nonnociceptive C-fibers. Increased analgesic specificity might derive from selective enhancement of slow inactivation of sodium channels.


Assuntos
Analgésicos/farmacologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Condução Nervosa/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Acetamidas/farmacologia , Animais , Estimulação Elétrica , Feminino , Lacosamida , Lidocaína/farmacologia , Masculino , Fibras Nervosas Amielínicas/fisiologia , Condução Nervosa/fisiologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Tempo de Reação/efeitos dos fármacos , Pele/inervação , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA