Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemistry ; 6(18): 3434-41, 2000 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-11039537

RESUMO

Surface second harmonic generation (SSHG) studies of the azobenzene derivative p-dimethylaminoazobenzene sulfonate, often referred as Methyl Orange (MO), at the neat water/1,2-dichloroethane (DCE) interface is reported. The two forms of the anionic MO dye, which are usually observed in bulk solution, with one form being hydrogen bonded to a water molecule through the azo nitrogens (MO/H2O) and the other form not being hydrogen bonded (MO) have also been observed at the water/DCE interface. Their equilibrium constant has been compared with the corresponding bulk solution and found to be identical. The adsorption equilibrium of the two forms has been determined and the Gibbs energy of adsorption measured to be -30 kJmol(-1) for both forms. From a light polarisation analysis of the SH signal, the angle of orientation of the MO transition dipole moment was found to be 34 +/- 2 degrees for MO and 43 +/- 2 degrees for MO/H2O under the assumption of a Dirac delta function for the angle distribution, a difference explained by the different solvation properties of the two forms. Furthermore, the wavelength dependence analysis of these data revealed an interference pattern resulting from the electronic density redistribution within the hydrated anionic form occurring upon the formation of the hydrogen bond with a water molecule. This interference pattern was clearly evidenced with the use of another dye at the interface in order to define a phase reference to both forms of Methyl Orange.

2.
Biophys J ; 77(6): 3350-5, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10585957

RESUMO

We present a study of the adsorption of the glucose oxidase enzyme (GOx) at the air/water interface, using the nonlinear optical technique of surface second harmonic generation (SSHG). Resonant SSHG experiments were achieved by probing the pi-pi* transition of the flavin adenine dinucleotide (FAD) chromophores embedded in the GOx protein. Because of the subsequent resonance enhancement of the signal, the second harmonic (SH) wave arising from the GOx entities adsorbed at the interface was detectable for protein bulk aqueous concentrations as low as 70 nM. The protein adsorption was followed, and, at high GOx coverage, a change in the orientation of the FAD chromophore was observed, indicating either a rearrangement or a reorientation of the protein at the interface. Inasmuch as GOx is negatively charged at the biological pH of 7, its interactions with charged surfactants were also investigated. As expected, spreading positively charged surfactants onto a partial protein monolayer was found to increase the GOx surface concentration, whereas in the case of negatively charged surfactants, the GOx surface concentration decreased until the SH signal went back to the pure buffer solution response level. With the increasing GOx surface concentration, the rearrangement or reorientation of the protein was also observed.


Assuntos
Glucose Oxidase/química , Ar , Aspergillus niger/enzimologia , Fenômenos Biofísicos , Biofísica , Cetrimônio , Compostos de Cetrimônio , Dinâmica não Linear , Óptica e Fotônica/instrumentação , Espectrofotometria , Espectrofotometria Ultravioleta , Tensoativos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA