RESUMO
Identification of specific and therapeutically actionable vulnerabilities, ideally present across multiple mutational backgrounds, is needed to improve acute myeloid leukemia (AML) patients' outcomes. We identify stearoyl-CoA desaturase (SCD), the key enzyme in fatty acid (FA) desaturation, as prognostic of patients' outcomes and, using the clinical-grade inhibitor SSI-4, show that SCD inhibition (SCDi) is a therapeutic vulnerability across multiple AML models in vitro and in vivo. Multiomic analysis demonstrates that SCDi causes lipotoxicity, which induces AML cell death via pleiotropic effects. Sensitivity to SCDi correlates with AML dependency on FA desaturation regardless of mutational profile and is modulated by FA biosynthesis activity. Finally, we show that lipotoxicity increases chemotherapy-induced DNA damage and standard chemotherapy further sensitizes AML cells to SCDi. Our work supports developing FA desaturase inhibitors in AML while stressing the importance of identifying predictive biomarkers of response and biologically validated combination therapies to realize their full therapeutic potential.
Assuntos
Ácidos Graxos , Leucemia Mieloide Aguda , Estearoil-CoA Dessaturase , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Humanos , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Camundongos , Animais , Prognóstico , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Dano ao DNA/efeitos dos fármacosRESUMO
In their paper, using zebrafish models, Gioacchino et al. have demonstrated the GATA2 haploinsufficiency, the genetic hallmark of GATA2 deficiency syndrome, promotes erythroid and myeloid cytopenia, and have discovered a self-regulatory mechanism to compensate GATA2 levels and protein function. Commentary on: Gioacchino et al. GATA2 heterozygosity causes an epigenetic feedback mechanism resulting in myeloid and erythroid dysplasia. Br J Haematol 2024;205:580-593.
Assuntos
Deficiência de GATA2 , Fator de Transcrição GATA2 , Peixe-Zebra , Deficiência de GATA2/genética , Animais , Peixe-Zebra/genética , Humanos , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/deficiência , Haploinsuficiência , Modelos Animais de Doenças , Epigênese GenéticaRESUMO
Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.
Assuntos
Neoplasias Hematológicas , Leucemia , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Neoplasias Hematológicas/genética , Mutação em Linhagem Germinativa , RNA Helicases DEAD-box/genética , Carcinogênese , Células Germinativas , Fator de Transcrição GATA2/genéticaRESUMO
The implementation of whole genome sequencing and large somatic gene panels in haematological malignancies is identifying an increasing number of individuals with either potential or confirmed germline predisposition to haematological malignancy. There are currently no national or international best practice guidelines with respect to management of carriers of such variants or of their at-risk relatives. To address this gap, the UK Cancer Genetics Group (UKCGG), CanGene-CanVar and the NHS England Haematological Oncology Working Group held a workshop over two days on 28-29th April 2022, with the aim of establishing consensus guidelines on relevant clinical and laboratory pathways. The workshop focussed on the management of disease-causing germline variation in the following genes: DDX41, CEBPA, RUNX1, ANKRD26, ETV6, GATA2. Using a pre-workshop survey followed by structured discussion and in-meeting polling, we achieved consensus for UK best practice in several areas. In particular, high consensus was achieved on issues regarding standardised reporting, variant classification, multidisciplinary team working and patient support. The best practice recommendations from this meeting may be applicable to an expanding number of other genes in this setting.
Assuntos
Predisposição Genética para Doença , Neoplasias Hematológicas , Humanos , Medicina Estatal , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Mutação em Linhagem Germinativa , Inglaterra , Células GerminativasRESUMO
Acute myeloid leukaemia (AML) patients harbouring certain chromosome abnormalities have particularly adverse prognosis. For these patients, targeted therapies have not yet made a significant clinical impact. To understand the molecular landscape of poor prognosis AML we profiled 74 patients from two different centres (in UK and Finland) at the proteomic, phosphoproteomic and drug response phenotypic levels. These data were complemented with transcriptomics analysis for 39 cases. Data integration highlighted a phosphoproteomics signature that define two biologically distinct groups of KMT2A rearranged leukaemia, which we term MLLGA and MLLGB. MLLGA presented increased DOT1L phosphorylation, HOXA gene expression, CDK1 activity and phosphorylation of proteins involved in RNA metabolism, replication and DNA damage when compared to MLLGB and no KMT2A rearranged samples. MLLGA was particularly sensitive to 15 compounds including genotoxic drugs and inhibitors of mitotic kinases and inosine-5-monosphosphate dehydrogenase (IMPDH) relative to other cases. Intermediate-risk KMT2A-MLLT3 cases were mainly represented in a third group closer to MLLGA than to MLLGB. The expression of IMPDH2 and multiple nucleolar proteins was higher in MLLGA and correlated with the response to IMPDH inhibition in KMT2A rearranged leukaemia, suggesting a role of the nucleolar activity in sensitivity to treatment. In summary, our multilayer molecular profiling of AML with poor prognosis and KMT2A-MLLT3 karyotypes identified a phosphoproteomics signature that defines two biologically and phenotypically distinct groups of KMT2A rearranged leukaemia. These data provide a rationale for the potential development of specific therapies for AML patients characterised by the MLLGA phosphoproteomics signature identified in this study.
Assuntos
Leucemia Mieloide Aguda , Proteômica , Humanos , Rearranjo Gênico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/genética , FenótipoRESUMO
Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development. Among MDS-specific lesions, we detect the upregulation of the transcription factor DNA Damage Inducible Transcript 3 (DDIT3). Overexpression of DDIT3 in human healthy HSCs induces an MDS-like transcriptional state, and dyserythropoiesis, an effect associated with a failure in the activation of transcriptional programs required for normal erythroid differentiation. Moreover, DDIT3 knockdown in CD34+ cells from MDS patients with anemia is able to restore erythropoiesis. These results identify DDIT3 as a driver of dyserythropoiesis, and a potential therapeutic target to restore the inefficient erythroid differentiation characterizing MDS patients.
Assuntos
Síndromes Mielodisplásicas , Fatores de Transcrição , Adulto , Humanos , Idoso , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Síndromes Mielodisplásicas/patologia , Eritropoese/genética , Células-Tronco Hematopoéticas/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição CHOP/genéticaRESUMO
Despite the inclusion of inherited myeloid malignancies as a separate entity in the World Health Organization Classification, many established predisposing loci continue to lack functional characterization. While germline mutations in the DNA repair factor ERCC excision repair 6 like 2 (ERCC6L2) give rise to bone marrow failure and acute myeloid leukaemia, their consequences on normal haematopoiesis remain unclear. To functionally characterise the dual impact of germline ERCC6L2 loss on human primary haematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs), we challenged ERCC6L2-silenced and patient-derived cells ex vivo. Here, we show for the first time that ERCC6L2-deficiency in HSPCs significantly impedes their clonogenic potential and leads to delayed erythroid differentiation. This observation was confirmed by CIBERSORTx RNA-sequencing deconvolution performed on ERCC6L2-silenced erythroid-committed cells, which demonstrated higher proportions of polychromatic erythroblasts and reduced orthochromatic erythroblasts versus controls. In parallel, we demonstrate that the consequences of ERCC6L2-deficiency are not limited to HSPCs, as we observe a striking phenotype in patient-derived and ERCC6L2-silenced MSCs, which exhibit enhanced osteogenesis and suppressed adipogenesis. Altogether, our study introduces a valuable surrogate model to study the impact of inherited myeloid mutations and highlights the importance of accounting for the influence of germline mutations in HSPCs and their microenvironment.
Assuntos
Medula Óssea , Eritropoese , Humanos , Eritropoese/genética , Mutação em Linhagem Germinativa , Reparo do DNA/genética , Células Germinativas , DNA Helicases/genéticaRESUMO
Acute myeloid leukemia (AML) is an aggressive hematological disorder comprising a hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with limited self-renewal ability. AML has a dismal prognosis, with extremely low 2-year survival rates in the poorest cytogenetic risk patients, primarily due to the failure of intensive chemotherapy protocols to deplete LSCs and toxicity of therapy toward healthy hematopoietic cells. We studied the role of cyclin-dependent kinase regulatory subunit 1 (CKS1)-dependent protein degradation in primary human AML and healthy hematopoiesis xenograft models in vivo. Using a small-molecule inhibitor (CKS1i), we demonstrate a dual role for CKS1-dependent protein degradation in reducing patient-derived AML blasts in vivo and, importantly, depleting LSCs, whereas inhibition of CKS1 has the opposite effect on normal hematopoiesis, protecting normal hematopoietic stem cells from chemotherapeutic toxicity. Proteomic analysis of responses to CKS1i in our patient-derived xenograft mouse model demonstrate that inhibition of CKS1 in AML leads to hyperactivation of RAC1 and accumulation of lethal reactive oxygen species, whereas healthy hematopoietic cells enter quiescence in response to CKS1i, protecting hematopoietic stem cells. Together, these findings demonstrate that CKS1-dependent proteostasis is a key vulnerability in malignant stem cell biology.
Assuntos
Quinases relacionadas a CDC2 e CDC28 , Leucemia Mieloide Aguda , Animais , Quinases relacionadas a CDC2 e CDC28/metabolismo , Quinases relacionadas a CDC2 e CDC28/farmacologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Células-Tronco Neoplásicas , ProteômicaRESUMO
The DExD/H-box RNA helicase DHX34 is a nonsense-mediated decay (NMD) factor that together with core NMD factors coregulates NMD targets in nematodes and in vertebrates. Here, we show that DHX34 is also associated with the human spliceosomal catalytic C complex. Mapping of DHX34 endogenous binding sites using cross-linking immunoprecipitation (CLIP) revealed that DHX34 is preferentially associated with pre-mRNAs and locates at exon-intron boundaries. Accordingly, we observed that DHX34 regulates a large number of alternative splicing (AS) events in mammalian cells in culture, establishing a dual role for DHX34 in both NMD and pre-mRNA splicing. We previously showed that germline DHX34 mutations associated to familial myelodysplasia (MDS)/acute myeloid leukemia (AML) predisposition abrogate its activity in NMD. Interestingly, we observe now that DHX34 regulates the splicing of pre-mRNAs that have been linked to AML/MDS predisposition. This is consistent with silencing experiments in hematopoietic stem/progenitor cells (HSPCs) showing that loss of DHX34 results in differentiation blockade of both erythroid and myeloid lineages, which is a hallmark of AML development. Altogether, these data unveil new cellular functions of DHX34 and suggest that alterations in the levels and/or activity of DHX34 could contribute to human disease.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Processamento Alternativo , Animais , Humanos , Leucemia Mieloide Aguda/genética , Mamíferos/genética , Síndromes Mielodisplásicas/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genéticaRESUMO
Inherited bone marrow failure (BMF) syndromes are a heterogeneous group of diseases characterized by defective hematopoiesis and often predisposing to myelodysplastic syndrome (MDS) and acute myelogenous leukemia. We have studied a large family consisting of several affected individuals with hematologic abnormalities, including one family member who died of acute leukemia. By whole-exome sequencing, we identified a novel frameshift variant in the ubiquitously expressed transcription factor specificity protein 1 (SP1). This heterozygous variant (c.1995delA) truncates the canonical Sp1 molecule in the highly conserved C-terminal DNA-binding zinc finger domains. Transcriptomic analysis and gene promoter characterization in patients' blood revealed a hypermorphic effect of this Sp1 variant, triggering superactivation of Sp1-mediated transcription and driving significant up-regulation of Sp1 target genes. This familial genetic study indicates a central role for Sp1 in causing autosomal dominant transmission of BMF, thereby confirming its critical role in hematopoiesis in humans.
Assuntos
Transtornos da Insuficiência da Medula Óssea/genética , Mutação da Fase de Leitura/genética , Fator de Transcrição Sp1/genética , Transcrição Gênica/genética , Feminino , Humanos , Masculino , Linhagem , Transcriptoma/genética , Regulação para Cima/genética , Dedos de Zinco/genéticaRESUMO
Acute myeloid leukemia (AML) is characterised by a series of genetic and epigenetic alterations that result in deregulation of transcriptional networks. One understudied source of transcriptional regulators are transposable elements (TEs), whose aberrant usage could contribute to oncogenic transcriptional circuits. However, the regulatory influence of TEs and their links to AML pathogenesis remain unexplored. Here we identify six endogenous retrovirus (ERV) families with AML-associated enhancer chromatin signatures that are enriched in binding of key regulators of hematopoiesis and AML pathogenesis. Using both locus-specific genetic editing and simultaneous epigenetic silencing of multiple ERVs, we demonstrate that ERV deregulation directly alters the expression of adjacent genes in AML. Strikingly, deletion or epigenetic silencing of an ERV-derived enhancer suppresses cell growth by inducing apoptosis in leukemia cell lines. This work reveals that ERVs are a previously unappreciated source of AML enhancers that may be exploited by cancer cells to help drive tumour heterogeneity and evolution.
Assuntos
Cromatina/metabolismo , Leucemia Mieloide Aguda/genética , Animais , Linhagem Celular , Cromatina/genética , Elementos de DNA Transponíveis/genética , Retrovirus Endógenos/genética , Epigênese Genética/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Genoma Humano/genética , Humanos , Sequências Repetitivas Dispersas/genéticaRESUMO
The inclusion of familial myeloid malignancies as a separate disease entity in the revised WHO classification has renewed efforts to improve the recognition and management of this group of at risk individuals. Here we report a cohort of 86 acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) families with 49 harboring germline variants in 16 previously defined loci (57%). Whole exome sequencing in a further 37 uncharacterized families (43%) allowed us to rationalize 65 new candidate loci, including genes mutated in rare hematological syndromes (ADA, GP6, IL17RA, PRF1 and SEC23B), reported in prior MDS/AML or inherited bone marrow failure series (DNAH9, NAPRT1 and SH2B3) or variants at novel loci (DHX34) that appear specific to inherited forms of myeloid malignancies. Altogether, our series of MDS/AML families offer novel insights into the etiology of myeloid malignancies and provide a framework to prioritize variants for inclusion into routine diagnostics and patient management.
Assuntos
Mutação em Linhagem Germinativa , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Desaminase/genética , Dineínas do Axonema/genética , Estudos de Coortes , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Linhagem , Perforina/genética , Glicoproteínas da Membrana de Plaquetas/genética , RNA Helicases/genética , Receptores de Interleucina-17/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento do ExomaRESUMO
Modern management of acute myeloid leukaemia (AML) relies on the integration of phenotypic and genetic data to assign classification, establish prognosis, enhance monitoring and guide treatment. The prism through which we can now disperse a patient's leukaemia, interpret and apply our understanding has fundamentally changed since the completion of the first whole-genome sequencing (WGS) of an AML patient in 2008 and where possible, many clinicians would now prefer to delay treatment decisions until the karyotype and genetic status of a new patient is known. The success of global sequencing initiatives such as The Cancer Genome Atlas (TCGA) have brought us significantly closer to cataloguing the full spectrum of coding mutations involved in human malignancy. Indeed, genetic capability has raced ahead of our capacity to apply much of this knowledge into clinical practice and we are in the peculiar position of having routine access to genetic information on an individual patient's leukaemia that cannot be reliably interpreted or utilised. This is a measure of how rapid the progress has been, and this rate of change is likely to continue into the foreseeable future as research intensifies on the non-coding genome and the epigenome, as we scrutinise disease at a single cell level, and as initiatives like Beat AML and the Harmony Alliance progress. In this review, we will examine how interrogation of the coding genome is revolutionising our understanding of AML and improving our ability to underscore differences between paediatric and adult onset, sporadic and inherited forms of disease. We will look at how this knowledge is informing improvements in outcome prediction and the development of novel treatments, bringing us a step closer to personalised therapy for myeloid malignancy.
Assuntos
Bases de Dados Genéticas , Epigenoma , Genoma Humano , Leucemia Mieloide Aguda/genética , Mutação , Sequenciamento Completo do Genoma , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapiaRESUMO
In the original version of this article the authors noted an omission in the author affiliations where the university details: Queen Mary University of London was not included in the original affiliation for the majority of the authors. The correct affiliations are as follows1. Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK3. Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK6. Evolution and Cancer Laboratory, Barts Cancer Institute, Queen Mary University of London, London, UK.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Linfoma Difuso de Grandes Células B , Segunda Neoplasia Primária , Adulto , Aloenxertos , Criança , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/etiologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Masculino , Segunda Neoplasia Primária/tratamento farmacológico , Segunda Neoplasia Primária/etiologia , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/patologiaRESUMO
Biallelic variants in the ERCC excision repair 6 like 2 gene (ERCC6L2) are known to cause bone marrow failure (BMF) due to defects in DNA repair and mitochondrial function. Here, we report on eight cases of BMF from five families harboring biallelic variants in ERCC6L2, two of whom present with myelodysplasia. We confirm that ERCC6L2 patients' lymphoblastoid cell lines (LCLs) are hypersensitive to DNA-damaging agents that specifically activate the transcription coupled nucleotide excision repair (TCNER) pathway. Interestingly, patients' LCLs are also hypersensitive to transcription inhibitors that interfere with RNA polymerase II (RNA Pol II) and display an abnormal delay in transcription recovery. Using affinity-based mass spectrometry we found that ERCC6L2 interacts with DNA-dependent protein kinase (DNA-PK), a regulatory component of the RNA Pol II transcription complex. Chromatin immunoprecipitation PCR studies revealed ERCC6L2 occupancy on gene bodies along with RNA Pol II and DNA-PK. Patients' LCLs fail to terminate transcript elongation accurately upon DNA damage and display a significant increase in nuclear DNA-RNA hybrids (R loops). Collectively, we conclude that ERCC6L2 is involved in regulating RNA Pol II-mediated transcription via its interaction with DNA-PK to resolve R loops and minimize transcription-associated genome instability. The inherited BMF syndrome caused by biallelic variants in ERCC6L2 can be considered as a primary transcription deficiency rather than a DNA repair defect.