Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Res Struct Biol ; 3: 30-40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235484

RESUMO

Alpha-helical repeat proteins such as consensus-designed tetratricopeptide repeats (CTPRs) are exceptionally stable molecules that are able to tolerate destabilizing sequence alterations and are therefore becoming increasingly valued as a modular platform for biotechnology and biotherapeutic applications. A simple approach to functionalize the CTPR scaffold that we are pioneering is the insertion of short linear motifs (SLiMs) into the loops between adjacent repeats. Here, we test the limits of the scaffold by inserting 17 highly diverse amino acid sequences of up to 58 amino acids in length into a two-repeat protein and examine the impact on protein folding, stability and solubility. The sequences include three SLiMs that bind oncoproteins and eleven naturally occurring linker sequences all predicted to be intrinsically disordered but with conformational preferences ranging from compact globules to expanded coils. We show that the loop-grafted proteins retain the native CTPR structure and are thermally stable with melting temperatures above 60 â€‹°C, despite the longest loop sequence being almost the same size as the CTPR scaffold itself (68 amino acids). Although the main determinant of the effect of stability was found to be loop length and was relatively insensitive to amino acid composition, the relationship between protein solubility and the loop sequences was more complex, with the presence of negatively charged amino acids enhancing the solubility. Our findings will help us to fully realize the potential of the repeat-protein scaffold, allowing a rational design approach to create artificial modular proteins with customized functional capabilities.

2.
Immunity ; 41(2): 230-43, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25148024

RESUMO

CD8αα(+) intraepithelial lymphocytes (IELs) are instrumental in maintaining the epithelial barrier in the intestine. Similar to natural killer cells and other innate lymphoid cells, CD8αα(+) IELs constitutively express the T-box transcription factor T-bet. However, the precise role of T-bet for the differentiation or function of IELs is unknown. Here we show that mice genetically deficient for T-bet lacked both TCRαß(+) and TCRγδ(+) CD8αα(+) IELs and thus are more susceptible to chemically induced colitis. Although T-bet was induced in thymic IEL precursors (IELPs) as a result of agonist selection and interleukin-15 (IL-15) receptor signaling, it was dispensable for the generation of IELPs. Subsequently, T-bet was required for the IL-15-dependent activation, differentiation, and expansion of IELPs in the periphery. Our study reveals a function of T-bet as a central transcriptional regulator linking agonist selection and IL-15 signaling with the emergence of CD8αα(+) IELs.


Assuntos
Antígenos CD8/biossíntese , Interleucina-15/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Proteínas com Domínio T/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Colite/induzido quimicamente , Colite/imunologia , Células Epiteliais/imunologia , Interleucina-15/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Intestinos/citologia , Intestinos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-15/imunologia , Transdução de Sinais/imunologia , Proteínas com Domínio T/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA