Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 146(1): 149-166, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298632

RESUMO

Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Huntington/genética , Astrócitos/metabolismo , Proteostase , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
2.
F1000Res ; 11: 711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36999088

RESUMO

We are at a time of considerable growth in the use and development of transcriptomics studies and subsequent in silico analysis. RNA sequencing is one of the most widely used approaches, now integrated in many studies.  The processing of these data may typically require a noteworthy number of steps, statistical knowledge, and coding skills which is not accessible to all scientists. Despite the undeniable development of software applications over the years to address this concern, it is still possible to improve.  Here we present DEVEA, an R shiny application tool developed to perform differential expression analysis, data visualization and enrichment pathway analysis mainly from transcriptomics data, but also from simpler gene lists with or without statistical values.  Its intuitive and easy-to-manipulate interface facilitates gene expression exploration through numerous interactive figures and tables, statistical comparisons of expression profile levels between groups and further meta-analysis such as enrichment analysis, without bioinformatics expertise. DEVEA performs a thorough analysis from multiple and flexible input data representing distinct analysis stages. From them, it produces dynamic graphs and tables, to explore the expression levels and statistical differential expression analysis results. Moreover, it generates a comprehensive pathway analysis to extend biological insights. Finally, a complete and customizable HTML report can be extracted for further result exploration outside the application. DEVEA is accessible at https://shiny.imib.es/devea/ and the source code is available on our GitHub repository https://github.com/MiriamRiquelmeP/DEVEA.


Assuntos
Visualização de Dados , Transcriptoma , Software , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos
3.
Sensors (Basel) ; 21(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33808978

RESUMO

Liver transplantation is the only curative treatment option in patients diagnosed with end-stage liver disease. The low availability of organs demands an accurate selection procedure based on histological analysis, in order to evaluate the allograft. This assessment, traditionally carried out by a pathologist, is not exempt from subjectivity. In this sense, new tools based on machine learning and artificial vision are continuously being developed for the analysis of medical images of different typologies. Accordingly, in this work, we develop a computer vision-based application for the fast and automatic objective quantification of macrovesicular steatosis in histopathological liver section slides stained with Sudan stain. For this purpose, digital microscopy images were used to obtain thousands of feature vectors based on the RGB and CIE L*a*b* pixel values. These vectors, under a supervised process, were labelled as fat vacuole or non-fat vacuole, and a set of classifiers based on different algorithms were trained, accordingly. The results obtained showed an overall high accuracy for all classifiers (>0.99) with a sensitivity between 0.844 and 1, together with a specificity >0.99. In relation to their speed when classifying images, KNN and Naïve Bayes were substantially faster than other classification algorithms. Sudan stain is a convenient technique for evaluating ME in pre-transplant liver biopsies, providing reliable contrast and facilitating fast and accurate quantification through the machine learning algorithms tested.


Assuntos
Transplante de Fígado , Algoritmos , Teorema de Bayes , Secções Congeladas , Humanos , Aprendizado de Máquina , Sudão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA