Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235117

RESUMO

The protein HFE (homeostatic iron regulator) is a key regulator of iron metabolism, and mutations in HFE underlie the most frequent form of hereditary haemochromatosis (HH-type I). Studies have shown that HFE interacts with transferrin receptor 1 (TFR1), a homodimeric type II transmembrane glycoprotein that is responsible for the cellular uptake of iron via iron-loaded transferrin (holo-transferrin) binding. It has been hypothesised that the HFE/TFR1 interaction serves as a sensor to the level of iron-loaded transferrin in circulation by means of a competition mechanism between HFE and iron-loaded transferrin association with TFR1. To investigate this, a series of peptides based on the helical binding interface between HFE and TFR1 were generated and shown to significantly interfere with the HFE/TFR1 interaction in an in vitro proximity ligation assay. The helical conformation of one of these peptides, corresponding to the α1 and α2 helices of HFE, was stabilised by the introduction of sidechain lactam "staples", but this did not result in an increase in the ability of the peptide to disrupt the HFE/TFR1 interaction. These peptides inhibitors of the protein-protein interaction between HFE and TFR1 are potentially useful tools for the analysis of the functional role of HFE in the regulation of hepcidin expression.


Assuntos
Hemocromatose , Hepcidinas , Hemocromatose/genética , Hemocromatose/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Hepcidinas/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ferro/metabolismo , Lactamas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
2.
Int J Biochem Cell Biol ; 141: 106094, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628027

RESUMO

Iron is an essential element for virtually all living things. Body iron levels are tightly controlled as both increased iron levels and iron deficiency are associated with many clinical conditions. Increased iron levels are associated with a worse prognosis in some cancers, so understanding the role of iron in cancer development has thus been an active area of research. Regulated forms of cell death are important in development and disease pathogenesis. In this Medicine in Focus review article, we discuss the role of iron in cancer, and ferroptosis, a new form of iron-regulated cell death triggered by increased iron and peroxidation of lipids. We also review the pathogenesis of cancer, potential therapeutics for targeting the increased requirement of iron, as well as how ferroptosis activation may have a role in treatment of cancers.


Assuntos
Ferroptose , Morte Celular , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos
3.
Clin Chem ; 67(10): 1324-1341, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402502

RESUMO

BACKGROUND: Hereditary hemochromatosis (HH) is a genetic disease, leading to iron accumulation and possible organ damage. Patients are usually homozygous for p. Cys282Tyr in the homeostatic iron regulator gene but may have mutations in other genes involved in the regulation of iron. Next-generation sequencing is increasingly being utilized for the diagnosis of patients, leading to the discovery of novel genetic variants. The clinical significance of these variants is often unknown. CONTENT: Determining the pathogenicity of such variants of unknown significance is important for diagnostics and genetic counseling. Predictions can be made using in silico computational tools and population data, but additional evidence is required for a conclusive pathogenicity classification. Genetic disease models, such as in vitro models using cellular overexpression, induced pluripotent stem cells or organoids, and in vivo models using mice or zebrafish all have their own challenges and opportunities when used to model HH and other iron disorders. Recent developments in gene-editing technologies are transforming the field of genetic disease modeling. SUMMARY: In summary, this review addresses methods and developments regarding the discovery and classification of genetic variants, from in silico tools to in vitro and in vivo models, and presents them in the context of HH. It also explores recent gene-editing developments and how they can be applied to the discussed models of genetic disease.


Assuntos
Hemocromatose , Animais , Genótipo , Hemocromatose/diagnóstico , Hemocromatose/genética , Proteína da Hemocromatose/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ferro , Camundongos , Peixe-Zebra/genética
4.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156073

RESUMO

The flavonol rutin has been shown to possess antioxidant and iron chelating properties in vitro and in vivo. These dual properties are beneficial as therapeutic options to reduce iron accumulation and the generation of reactive oxygen species (ROS) resultant from excess free iron. The effect of rutin on iron metabolism has been limited to studies performed in wildtype mice either injected or fed high-iron diets. The effect of rutin on iron overload caused by genetic dysregulation of iron homoeostasis has not yet been investigated. In the present study we examined the effect of rutin treatment on tissue iron loading in a genetic mouse model of iron overload, which mirrors the iron loading associated with Type 3 hereditary haemochromatosis patients who have a defect in Transferrin Receptor 2 (TFR2). Male TFR2 knockout (KO) mice were administered rutin via oral gavage for 21 continuous days. Following treatment, iron levels in serum, liver, duodenum and spleen were assessed. In addition, hepatic ferritin protein levels were determined by Western blotting, and expression of iron homoeostasis genes by quantitative real-time PCR. Rutin treatment resulted in a significant reduction in hepatic ferritin protein expression and serum transferrin saturation. In addition, trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity were observed. This is the first study to explore the utility of rutin as a potential iron chelator and therapeutic in an animal model of genetic iron overload.


Assuntos
Hemocromatose/tratamento farmacológico , Ferro/sangue , Fígado/efeitos dos fármacos , Receptores da Transferrina/deficiência , Rutina/farmacologia , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Ferritinas/metabolismo , Hemocromatose/sangue , Hemocromatose/genética , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores da Transferrina/sangue , Receptores da Transferrina/genética , Transferrina/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1867(7): 166142, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33839281

RESUMO

BACKGROUND & AIMS: Iron has been proposed as influencing the progression of liver disease in subjects with non-alcoholic fatty liver disease (NAFLD). We have previously shown that, in the Hfe-/- mouse model of hemochromatosis, feeding of a high-calorie diet (HCD) leads to increased liver injury. In this study we investigated whether the feeding of an iron deficient/HCD to Hfe-/- mice influenced the development of NAFLD. METHODS: Liver histology was assessed in Hfe-/- mice fed a standard iron-containing or iron-deficient diet plus or minus a HCD. Hepatic iron concentration, serum transferrin saturation and free fatty acid were measured. Expression of genes implicated in iron regulation and fatty liver disease was determined by quantitative real-time PCR (qRT-PCR). RESULTS: Standard iron/HCD-fed mice developed severe steatosis whereas NAS score was reduced in mice fed iron-deficient HCD. Mice fed iron-deficient HCD had lower liver weights, lower transferrin saturation and decreased ferroportin and hepcidin gene expression than HCD-fed mice. Serum non-esterified fatty acids were increased in iron-deficient HCD-fed mice compared with standard iron HCD. Expression analysis indicated that genes involved in fatty-acid binding and mTOR pathways were regulated by iron depletion. CONCLUSIONS: Our results indicate that decreasing iron intake attenuates the development of steatosis resulting from a high calorie diet. These results also suggest that human studies of agents that modify iron balance in patients with NAFLD should be revisited.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/prevenção & controle , Proteína da Hemocromatose/fisiologia , Deficiências de Ferro , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Biometals ; 34(4): 855-866, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33913062

RESUMO

Iron is an essential component for multiple biological processes. Its regulation within the body is thus tightly controlled. Dysregulation of iron levels within the body can result in several disorders associated with either excess iron accumulation, including haemochromatosis and thalassaemia, or iron deficiency. In cases of excess body iron, therapy involves depleting body iron levels either by venesection, typically for haemochromatosis, or using iron chelators for thalassemia. However, the current chelation options for people with iron overload are limited, with only three iron chelators approved for clinical use. This presents an opportunity for improved therapeutics to be identified and developed. The aim of this study was to examine multiple compounds from within the Davis open access natural product-based library (512 compounds) for their ability to chelate iron. In silico analysis of this library initially identified nine catechol-containing compounds and two closely related compounds. These compounds were subsequently screened using an in vitro DNA breakage assay and their ability to chelate biological iron was also examined in an iron-loaded hepatocyte cellular assay. Toxicity was assessed in hepatocyte and breast cancer cell lines. One compound, RAD362 [N-(3-aminopropyl)-3,4-dihydroxybenzamide] was able to protect against DNA damage, likely through the prevention of free radicals generated via the Fenton reaction; RAD362 treatment resulted in decreased ferritin protein levels in iron-loaded hepatocytes. Lastly, RAD362 resulted in significantly less cell death than the commonly used iron chelator deferoxamine. This is the first study to identify compound RAD362 as an iron chelator and potential therapeutic.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Catecóis/farmacologia , Quelantes de Ferro/farmacologia , Antineoplásicos/química , Produtos Biológicos/química , Catecóis/química , Proliferação de Células/efeitos dos fármacos , Quebras de DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Quelantes de Ferro/química , Células Tumorais Cultivadas
7.
Artigo em Inglês | MEDLINE | ID: mdl-33485480

RESUMO

Iron, the most common metal in the earth, is also an essential component for almost all living organisms. While these organisms require iron for many biological processes, too much or too little iron itself poses many issues; this is most easily recognized in human beings. The control of body iron levels is thus an important metabolic process which is regulated essentially by controlling the expression, activity and levels of the iron transporter ferroportin. Ferroportin is the only known iron exporter. The function and activity of ferroportin is influenced by its interaction with the iron-regulatory peptide hepcidin, which itself is regulated by many factors. Here we review the current state of understanding of the mechanisms that regulate ferroportin and its function.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Transporte Biológico/fisiologia , Humanos
8.
Biosci Rep ; 40(8)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32766721

RESUMO

Exome sequencing has identified the glyceronephosphate O-acyltransferase (GNPAT) gene as a genetic modifier of iron overload in hereditary hemochromatosis (HH). Subjects with HFE (Homeostatic Iron Regulator) p.C282Y mutations and the GNPAT p.D519G variant had more iron loading compared with subjects without the GNPAT variant. In response to an oral iron challenge, women with GNPAT polymorphisms loaded more iron as compared with women without polymorphisms, reinforcing a role for GNPAT in iron homeostasis. The aim of the present study was to develop and characterize an animal model of disease to further our understanding of genetic modifiers, and in particular the role of GNPAT in iron homeostasis. We generated an Hfe/Gnpat mouse model reminiscent of the patients previously studied and studied these mice for up to 26 weeks. We also examined the effect of dietary iron loading on mice with reduced Gnpat expression. Gnpat heterozygosity in Hfe knockout mice does not play a role in systemic iron homeostasis; Gnpat+/- mice fed a high-iron diet, however, had lower hepatic hepcidin (HAMP) mRNA expression, whereas they have significantly higher serum iron levels and transferrin saturation compared with wildtype (WT) littermates on a similar diet. These results reinforce an independent role of GNPAT in systemic iron homeostasis, reproducing in an animal model, the observations in women with GNPAT polymorphisms subjected to an iron tolerance test.


Assuntos
Aciltransferases/deficiência , Hemocromatose/enzimologia , Hepcidinas/metabolismo , Ferro da Dieta/metabolismo , Fígado/metabolismo , Aciltransferases/genética , Animais , Modelos Animais de Doenças , Hemocromatose/sangue , Hemocromatose/genética , Proteína da Hemocromatose/deficiência , Proteína da Hemocromatose/genética , Hepcidinas/genética , Homeostase , Ferro da Dieta/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais , Transferrina/metabolismo
9.
Blood Cells Mol Dis ; 85: 102463, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652459

RESUMO

Glyceronephosphate O-acyltransferase (GNPAT) p.D519G (rs11558492) was identified as a genetic modifier correlated with more severe iron overload in hemochromatosis through whole-exome sequencing of HFE p.C282Y homozygotes with extreme iron phenotypes. We studied the prevalence of p.D519G in HFE p.C282Y/p.H63D compound heterozygotes, a genotype associated with iron overload in some patients. Cases were Australian participants with elevated serum ferritin (SF) levels ≥300µg/L (males) and ≥200µg/L (females); subjects whose SF levels were below these cut-offs were designated as controls. Samples were genotyped for GNPAT p.D519G. We compared the allele frequency of the present subjects, with/without elevated SF, to p.D519G frequency in public datasets. GNPAT p.D519G was more prevalent in our cohort of p.C282Y/p.H63D compound heterozygotes with elevated SF (37%) than European public datasets: 1000G 21%, gnomAD 20% and ESP 21%. We conclude that GNPAT p.D519G is associated with elevated SF in Australian HFE p.C282Y/p.H63D compound heterozygotes.


Assuntos
Aciltransferases/genética , Proteína da Hemocromatose/genética , Hemocromatose/genética , Mutação Puntual , Adulto , Feminino , Ferritinas/sangue , Hemocromatose/sangue , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade
10.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165882, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32565019

RESUMO

Peroxisomes are organelles, abundant in the liver, involved in a variety of cellular functions, including fatty acid metabolism, plasmalogen synthesis and metabolism of reactive oxygen species. Several inherited disorders are associated with peroxisomal dysfunction; increasingly many are associated with hepatic pathologies. The liver plays a principal role in regulation of iron metabolism. In this study we examined the possibility of a relationship between iron homeostasis and peroxisomal integrity. We examined the effect of deleting Pex13 in mouse liver on systemic iron homeostasis. We also used siRNA-mediated knock-down of PEX13 in a human hepatoma cell line (HepG2/C3A) to elucidate the mechanisms of PEX13-mediated regulation of hepcidin. We demonstrate that transgenic mice lacking hepatocyte Pex13 have defects in systemic iron homeostasis. The ablation of Pex13 expression in hepatocytes leads to a significant reduction in hepatic hepcidin levels. Our results also demonstrate that a deficiency of PEX13 gene expression in HepG2/C3A cells leads to decreased hepcidin expression, which is mediated through an increase in the signalling protein SMAD7, and endoplasmic reticulum (ER) stress. This study identifies a novel role for a protein involved in maintaining peroxisomal integrity and function in iron homeostasis. Loss of Pex13, a protein important for peroxisomal function, in hepatocytes leads to a significant increase in ER stress, which if unresolved, can affect liver function. The results from this study have implications for the management of patients with peroxisomal disorders and the liver-related complications they may develop.


Assuntos
Hepatócitos/metabolismo , Ferro/metabolismo , Proteínas de Membrana/deficiência , Peroxissomos/patologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Membrana Celular/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático , Feminino , Técnicas de Silenciamento de Genes , Células Hep G2 , Hepcidinas/metabolismo , Humanos , Ferro/sangue , Fígado/citologia , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Modelos Animais , Transtornos Peroxissômicos/patologia , Peroxissomos/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Smad7/metabolismo
11.
Biosci Rep ; 40(5)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32301493

RESUMO

Mutations in the only known iron exporter ferroportin (FPN) in humans are associated with the autosomal dominantly inherited iron overload disorder ferroportin disease or type IV hereditary hemochromatosis (HH). While our knowledge of the central role of FPN in iron homeostasis has grown in the last 20 years, there exist some questions surrounding the structure and membrane topology of FPN with conflicting data on whether this receptor acts as a monomer or a multimer. To investigate and determine if FPN dimerization occurs in cells, we used novel tools including a variety of different FPN constructs expressing different tagged versions of the protein, a novel antibody that only detects cell surface FPN and proximity ligation assays. The results of the present study suggest that both the carboxy- and amino-termini of the FPN protein are intracellular. We also show that exogenously transfected FPN forms dimers; these dimers can be formed between the wild-type and mutant FPN proteins. This is the first study to examine the intracellular dimerization of FPN protein. Using proximity ligation assays, we show intracellular localization of FPN dimers and the interaction between FPN and hepcidin proteins as well. These results have important implications in the field of iron metabolism and add to our knowledge about FPN membrane topology and physiology of iron transport. This will be of importance in understanding the clinical implications of FPN mutations and of interest to future research aimed at targeting FPN expression to modulate iron homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hepatócitos/metabolismo , Ferro/metabolismo , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Hemocromatose/genética , Hepatócitos/citologia , Hepcidinas/metabolismo , Humanos , Mutação , Multimerização Proteica
12.
Pharmaceuticals (Basel) ; 12(4)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775259

RESUMO

The interaction between hepcidin and ferroportin is the key mechanism involved in regulation of systemic iron homeostasis. This axis can be affected by multiple stimuli including plasma iron levels, inflammation and erythropoietic demand. Genetic defects or prolonged inflammatory stimuli results in dysregulation of this axis, which can lead to several disorders including hereditary hemochromatosis and anaemia of chronic disease. An imbalance in iron homeostasis is increasingly being associated with worse disease outcomes in many clinical conditions including multiple cancers and neurological disorders. Currently, there are limited treatment options for regulating iron levels in patients and thus significant efforts are being made to uncover approaches to regulate hepcidin and ferroportin expression. These approaches either target these molecules directly or regulatory steps which mediate hepcidin or ferroportin expression. This review examines the current status of hepcidin and ferroportin agonists and antagonists, as well as inducers and inhibitors of these proteins and their regulatory pathways.

13.
Vitam Horm ; 110: 47-70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798816

RESUMO

Since its discovery in 2001, there have been a number of important discoveries and findings that have increased our knowledge about the functioning of hepcidin. Hepcidin, the master iron regulator has been shown to be regulated by a number of physiological stimuli and their associated signaling pathways. This chapter will summarize our current understanding of how these physiological stimuli and downstream signaling molecules are involved in hepcidin modulation and ultimately contribute to the regulation of systemic or local iron homeostasis. The signaling pathways and molecules described here have been shown to primarily affect hepcidin at a transcriptional level, but these transcriptional changes correlate with changes in systemic iron levels as well, supporting the functional effects of hepcidin regulation by these signaling pathways.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica , Hepcidinas/genética , Homeostase , Humanos , Transdução de Sinais/fisiologia
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(8): 2550-2556, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29752985

RESUMO

Our knowledge of iron homeostasis has increased steadily over the last two decades; much of this has been made possible through the study of animal models of iron-related disease. Analysis of transgenic mice with deletions or perturbations in genes known to be involved in systemic or local regulation of iron metabolism has been particularly informative. The effect of these genes on iron accumulation and hepcidin regulation is traditionally compared with wildtype mice fed a high iron diet, most often a 2% carbonyl iron diet. Recent studies have indicated that a very high iron diet could be detrimental to the health of the mice and could potentially affect homeostasis of other metals, for example zinc and copper. We analyzed mice fed a diet containing either 0.25%, 0.5%, 1% or 2% carbonyl iron for two weeks and compared them with mice on a control diet. Our results indicate that a 0.25% carbonyl iron diet is sufficient to induce maximal hepatic hepcidin response. Importantly these results also demonstrate that in a chronic setting of iron administration, the amount of excess hepatic iron may not further influence hepcidin regulation and that expression of hepcidin plateaus at lower hepatic iron levels. These studies provide further insights into the regulation of this important hormone.


Assuntos
Hemocromatose/metabolismo , Hepcidinas/metabolismo , Ferro , Fígado/metabolismo , Animais , Cobre/metabolismo , Modelos Animais de Doenças , Hemocromatose/patologia , Ferro/metabolismo , Ferro/farmacologia , Fígado/patologia , Masculino , Camundongos , Zinco/metabolismo
15.
Hum Genomics ; 12(1): 23, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695288

RESUMO

BACKGROUND: Atypical iron overload without variation in the five clinically associated hereditary hemochromatosis genes is now recognized; however, their etiology remains unknown. Since the identification of iron overload in the bone morphogenetic protein 6 (Bmp6) knockout mouse, the search has been on for clinically pathogenic variants in the BMP6 gene. A recent report proposes that variants in the pro-peptide region of BMP6 are the underlying cause of several cases of iron overload. We performed targeted next-generation sequencing on three cases of atypical iron overload with Asian ethnicity and identified a p.Q118dup (aka p.E112indelEQ, p.Q115dup, p.Q118_L119insQ) variant in BMP6. The purpose of this study was to characterize the molecular function of the identified BMP6 variant. Molecular characterization by immunofluorescence microscopy and Western blotting of transfected cells, bioinformatics, and population analyses was performed. RESULTS: In contrast to reports for other BMP6 pro-peptide variants in this region, our data indicates that this variant does not affect the function of the mature BMP6 protein. CONCLUSIONS: Our data suggest that assignment of disease causation in clinical cases of iron overload to pro-peptide variants in BMP6 should thus be treated with caution and requires biological characterization.


Assuntos
Proteína Morfogenética Óssea 6/genética , Predisposição Genética para Doença , Hemocromatose/genética , Sobrecarga de Ferro/genética , Animais , Hemocromatose/metabolismo , Hemocromatose/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Camundongos , Camundongos Knockout , Mutação , Peptídeos/genética
16.
Biosci Rep ; 37(6)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29097483

RESUMO

Red blood cell production (erythropoiesis) is the single largest consumer of iron in the body; this need is satisfied by maintaining a sensitive regulation of iron levels. The level of erythropoietic demand regulates the expression of the iron hormone hepcidin and thus iron absorption. Erythropoiesis-mediated regulation of hepcidin is an area of increasing importance and recent studies have identified a number of potential regulatory proteins. This review summarizes our current knowledge about these candidate erythroid regulators of hepcidin and the relation between transferrin receptors and erythropoiesis.


Assuntos
Eritropoese , Ferro/metabolismo , Animais , Hipóxia Celular , Eritrócitos/metabolismo , Regulação da Expressão Gênica , Hepcidinas/metabolismo , Homeostase , Humanos
17.
Am J Physiol Gastrointest Liver Physiol ; 313(3): G157-G165, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596277

RESUMO

The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism.


Assuntos
Homeostase/fisiologia , Ferro/metabolismo , Fígado/metabolismo , Enterócitos/fisiologia , Humanos , Macrófagos/fisiologia
19.
Am J Hematol ; 91(8): 812-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27169626

RESUMO

Iron metabolism and erythropoiesis are inherently interlinked physiological processes. Regulation of iron metabolism is mediated by the iron-regulatory hormone hepcidin. Hepcidin limits the amount of iron released into the blood by binding to and causing the internalization of the iron exporter, ferroportin. A number of molecules and physiological stimuli, including erythropoiesis, are known to regulate hepcidin. An increase in erythropoietic demand decreases hepcidin, resulting in increased bioavailable iron in the blood. Transferrin receptor 2 (TFR2) is involved in the systemic regulation of iron metabolism. Patients and mice with mutations in TFR2 develop hemochromatosis due to inappropriate hepcidin levels relative to body iron. Recent studies from our laboratory and others have suggested an additional role for TFR2 in response to iron-restricted erythropoiesis. These studies used mouse models with perturbed systemic iron metabolism: anemic mice lacking matriptase-2 and Tfr2, or bone marrow transplants from iron-loaded Tfr2 null mice. We developed a novel transgenic mouse model which lacks Tfr2 in the hematopoietic compartment, enabling the delineation of the role of Tfr2 in erythroid development without interfering with its role in systemic iron metabolism. We show that in the absence of hematopoietic Tfr2 immature polychromatic erythroblasts accumulate with a concordant reduction in the percentage of mature erythroid cells in the spleen and bone marrow of anemic mice. These results demonstrate that erythroid Tfr2 is essential for an appropriate erythropoietic response in iron-deficient anemia. These findings may be of relevance in clinical situations in which an immediate and efficient erythropoietic response is required. Am. J. Hematol. 91:812-818, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Anemia Ferropriva/patologia , Eritropoese , Deleção de Genes , Receptores da Transferrina/genética , Anemia Ferropriva/etiologia , Animais , Medula Óssea/patologia , Diferenciação Celular , Células Eritroides/patologia , Camundongos , Camundongos Transgênicos , Receptores da Transferrina/fisiologia , Baço/patologia
20.
Am J Physiol Gastrointest Liver Physiol ; 310(3): G171-80, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608187

RESUMO

Iron is an essential element, since it is a component of many macromolecules involved in diverse physiological and cellular functions, including oxygen transport, cellular growth, and metabolism. Systemic iron homeostasis is predominantly regulated by the liver through the iron regulatory hormone hepcidin. Hepcidin expression is itself regulated by a number of proteins, including transferrin receptor 2 (TFR2). TFR2 has been shown to be expressed in the liver, bone marrow, macrophages, and peripheral blood mononuclear cells. Studies from our laboratory have shown that mice with a hepatocyte-specific deletion of Tfr2 recapitulate the hemochromatosis phenotype of the global Tfr2 knockout mice, suggesting that the hepatic expression of TFR2 is important in systemic iron homeostasis. It is unclear how TFR2 in macrophages contributes to the regulation of iron metabolism. We examined the role of TFR2 in macrophages by analysis of transgenic mice lacking Tfr2 in macrophages by crossing Tfr2(f/f) mice with LysM-Cre mice. Mice were fed an iron-rich diet or injected with lipopolysaccharide to examine the role of macrophage Tfr2 in iron- or inflammation-mediated regulation of hepcidin. Body iron homeostasis was unaffected in the knockout mice, suggesting that macrophage TFR2 is not required for the regulation of systemic iron metabolism. However, peritoneal macrophages of knockout mice had significantly lower levels of ferroportin mRNA and protein, suggesting that TFR2 may be involved in regulating ferroportin levels in macrophages. These studies further elucidate the role of TFR2 in the regulation of iron homeostasis and its role in regulation of ferroportin and thus macrophage iron homeostasis.


Assuntos
Homeostase/genética , Ferro/metabolismo , Macrófagos Peritoneais/metabolismo , Receptores da Transferrina/genética , Animais , Proteínas de Transporte de Cátions/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Ferro/sangue , Ferro da Dieta/farmacologia , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA