RESUMO
Climate change has far-reaching effects on human and ecological systems, requiring collaboration across sectors and disciplines to determine effective responses. To inform regional responses to climate change, decision-makers need credible and relevant information representing a wide swath of knowledge and perspectives. The southeastern U. S. State of Georgia is a valuable focal area for study because it contains multiple ecological zones that vary greatly in land use and economic activities, and it is vulnerable to diverse climate change impacts. We identified 40 important research questions that, if answered, could lay the groundwork for effective, science-based climate action in Georgia. Top research priorities were identified through a broad solicitation of candidate research questions (180 were received). A group of experts across sectors and disciplines gathered for a workshop to categorize, prioritize, and filter the candidate questions, identify missing topics, and rewrite questions. Participants then collectively chose the 40 most important questions. This cross-sectoral effort ensured the inclusion of a diversity of topics and questions (e.g., coastal hazards, agricultural production, ecosystem functioning, urban infrastructure, and human health) likely to be important to Georgia policy-makers, practitioners, and scientists. Several cross-cutting themes emerged, including the need for long-term data collection and consideration of at-risk Georgia citizens and communities. Workshop participants defined effective responses as those that take economic cost, environmental impacts, and social justice into consideration. Our research highlights the importance of collaborators across disciplines and sectors, and discussing challenges and opportunities that will require transdisciplinary solutions.
Assuntos
Pessoal Administrativo , Mudança Climática , Conservação dos Recursos Naturais/métodos , Política Ambiental , Pesquisa/organização & administração , Tomada de Decisões , Ecossistema , Georgia , HumanosRESUMO
Raw poultry litter has certain drawbacks for energy production such as high ash and moisture content, a corrosive nature, and low heating values. A combined solution to utilization of raw poultry litter may involve fractionation and pyrolysis. Fractionation divides poultry litter into a fine, nutrient-rich fraction and a coarse, carbon-dense fraction. Pyrolysis of the coarse fraction would remove the corrosive volatiles as bio-oil, leaving clean char. This paper presents the effect of fractionation and pyrolysis process parameters on the calorific value of char and on the characterization of bio-oil. Poultry litter samples collected from three commercial poultry farms were divided into 10 treatments that included 2 controls (raw poultry litter and its coarse fraction having particle size greater than 0.85 mm) and 8 other treatments that were combinations of three factors: type (raw poultry litter or its coarse fraction), heating rate (30 or 10 degrees C/min), and pyrolysis temperature (300 or 500 degrees C). After the screening process, the poultry litter samples were dried and pyrolyzed in a batch reactor under nitrogen atmosphere and char and condensate yields were recorded. The condensate was separated into three fractions on the basis of their density: heavy, medium, and light phase. Calorific value and proximate and nutrient analysis were performed for char, condensate, and feedstock. Results show that the char with the highest calorific value (17.39 +/- 1.37 MJ/kg) was made from the coarse fraction at 300 degrees C, which captured 68.71 +/- 9.37% of the feedstock energy. The char produced at 300 degrees C had 42 +/- 11 mg/kg arsenic content but no mercury. Almost all of the Al, Ca, Fe, K, Mg, Na, and P remained in the char. The pyrolysis process reduced ammoniacal-nitrogen (NH4-N) in char by 99.14 +/- 0.47% and nitrate-nitrogen (NO3-N) by 95.79 +/- 5.45% at 500 degrees C.