Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(11): 6729-6745, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28379520

RESUMO

Pre-mRNA splicing is catalyzed by the spliceosome, a multi-megadalton ribonucleoprotein machine. Previous work from our laboratory revealed the splicing factor SRSF1 as a regulator of the SUMO pathway, leading us to explore a connection between this pathway and the splicing machinery. We show here that addition of a recombinant SUMO-protease decreases the efficiency of pre-mRNA splicing in vitro. By mass spectrometry analysis of anti-SUMO immunoprecipitated proteins obtained from purified splicing complexes formed along the splicing reaction, we identified spliceosome-associated SUMO substrates. After corroborating SUMOylation of Prp3 in cultured cells, we defined Lys 289 and Lys 559 as bona fide SUMO attachment sites within this spliceosomal protein. We further demonstrated that a Prp3 SUMOylation-deficient mutant while still capable of interacting with U4/U6 snRNP components, is unable to co-precipitate U2 and U5 snRNA and the spliceosomal proteins U2-SF3a120 and U5-Snu114. This SUMOylation-deficient mutant fails to restore the splicing of different pre-mRNAs to the levels achieved by the wild type protein, when transfected into Prp3-depleted cultured cells. This mutant also shows a diminished recruitment to active spliceosomes, compared to the wild type protein. These findings indicate that SUMO conjugation plays a role during the splicing process and suggest the involvement of Prp3 SUMOylation in U4/U6•U5 tri-snRNP formation and/or recruitment.


Assuntos
Proteínas Nucleares/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Spliceossomos/metabolismo , Sumoilação , Cisteína Endopeptidases/química , Cisteína Endopeptidases/fisiologia , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/química , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química
2.
PLoS Pathog ; 12(8): e1005841, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27575636

RESUMO

Dengue virus NS5 protein plays multiple functions in the cytoplasm of infected cells, enabling viral RNA replication and counteracting host antiviral responses. Here, we demonstrate a novel function of NS5 in the nucleus where it interferes with cellular splicing. Using global proteomic analysis of infected cells together with functional studies, we found that NS5 binds spliceosome complexes and modulates endogenous splicing as well as minigene-derived alternative splicing patterns. In particular, we show that NS5 alone, or in the context of viral infection, interacts with core components of the U5 snRNP particle, CD2BP2 and DDX23, alters the inclusion/exclusion ratio of alternative splicing events, and changes mRNA isoform abundance of known antiviral factors. Interestingly, a genome wide transcriptome analysis, using recently developed bioinformatics tools, revealed an increase of intron retention upon dengue virus infection, and viral replication was improved by silencing specific U5 components. Different mechanistic studies indicate that binding of NS5 to the spliceosome reduces the efficiency of pre-mRNA processing, independently of NS5 enzymatic activities. We propose that NS5 binding to U5 snRNP proteins hijacks the splicing machinery resulting in a less restrictive environment for viral replication.


Assuntos
Dengue , Interações Hospedeiro-Parasita/genética , Splicing de RNA , Spliceossomos/virologia , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Vírus da Dengue/patogenicidade , Vírus da Dengue/fisiologia , Imunofluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Transfecção
3.
Biochem J ; 468(2): 203-14, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25997832

RESUMO

Akt/PKB, a serine/threonine kinase member of the AGC family of proteins, is involved in the regulation of a plethora of cellular processes triggered by a wide diversity of extracellular signals and is thus considered a key signalling molecule in higher eukaryotes. Deregulation of Akt signalling is associated with a variety of human diseases, revealing Akt-dependent pathways as an attractive target for therapeutic intervention. Since its discovery in the early 1990s, a large body of work has focused on Akt phosphorylation of two residues, Thr308 and Ser473, and modification of these two sites has been established as being equivalent to Akt activation. More recently, Akt has been identified as a substrate for many different post-translational modifications, including not only phosphorylation of other residues, but also acetylation, glycosylation, oxidation, ubiquitination and SUMOylation. These modifications could provide additional regulatory steps for fine-tuning Akt function, Akt trafficking within the cell and/or for determining the substrate specificity of this signalling molecule. In the present review, we provide an overview of these different post-translational modifications identified for Akt, focusing on their consequences for this kinase activity.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Humanos
4.
Cell Cycle ; 12(19): 3165-74, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24013425

RESUMO

Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein. We found that phosphorylation and SUMOylation of Akt appear as independent events. However, decreasing Akt SUMOylation levels severely affects the role of this kinase as a regulator of fibronectin and Bcl-x alternative splicing. Moreover, we observed that the Akt mutant (Akt E17K) found in several human tumors displays increased levels of SUMOylation and also an enhanced capacity to regulate fibronectin splicing patterns. This splicing regulatory activity is completely abolished by decreasing Akt E17K SUMO conjugation levels. Additionally, we found that SUMOylation controls Akt regulatory function at G1/S transition during cell cycle progression. These findings reveal SUMO conjugation as a novel level of regulation for Akt activity, opening new areas of exploration related to the molecular mechanisms involved in the diverse cellular functions of this kinase.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Processamento Alternativo , Fibronectinas/genética , Fibronectinas/metabolismo , Fase G1 , Células HEK293 , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fase S , Sumoilação , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
5.
PLoS One ; 8(7): e69668, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922774

RESUMO

The unfolded protein response (UPR) and the Akt signaling pathway share several regulatory functions and have the capacity to determine cell outcome under specific conditions. However, both pathways have largely been studied independently. Here, we asked whether the Akt pathway regulates the UPR. To this end, we used a series of chemical compounds that modulate PI3K/Akt pathway and monitored the activity of the three UPR branches: PERK, IRE1 and ATF6. The antiproliferative and antiviral drug Akt-IV strongly and persistently activated all three branches of the UPR. We present evidence that activation of PERK/eIF2α requires Akt and that PERK is a direct Akt target. Chemical activation of this novel Akt/PERK pathway by Akt-IV leads to cell death, which was largely dependent on the presence of PERK and IRE1. Finally, we show that hypoxia-induced activation of eIF2α requires Akt, providing a physiologically relevant condition for the interaction between Akt and the PERK branch of the UPR. These data suggest the UPR and the Akt pathway signal to one another as a means of controlling cell fate.


Assuntos
Hipóxia Celular/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , eIF-2 Quinase/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Células HeLa , Humanos
6.
Brief Funct Genomics ; 12(1): 66-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23178477

RESUMO

Alternative splicing and post-translational modifications are key events for the generation of proteome diversity in eukaryotes. The study of the molecular mechanisms governing these processes, and every other step of gene expression, has underscored the existing interconnectedness among them. Therefore, molecules that could concertedly regulate different stages from transcription to pre-mRNA processing, translation and even protein activity have called our attention. Serine/arginine-rich proteins, initially identified as splicing regulators, are involved in diverse aspects of gene expression. Although most of the roles exerted by members of this family are related to mRNA biogenesis and metabolism, few recently uncovered ones link these proteins to other regulatory steps along gene expression, particularly the regulation of post-translational modification by conjugation of the small ubiquitin-related modifier. This along with the established link between ubiquitin, transcription and pre-mRNA processing points to a general mechanism of interaction between different cellular machineries, such as ubiquitin/ubiquitin-like conjugation pathways, transcription apparatus and the spliceosome.


Assuntos
Processamento de Proteína Pós-Traducional , RNA/metabolismo , Ubiquitina/metabolismo , Processamento Alternativo/genética , Animais , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional/genética , RNA/genética
7.
PLoS One ; 7(11): e48084, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23152763

RESUMO

Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3' splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ∼20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin structure is essential for efficient co-transcriptional recruitment of general and regulatory splicing factors to pre-mRNA.


Assuntos
Cromatina/metabolismo , Splicing de RNA/fisiologia , Ribonucleoproteínas/metabolismo , Acetilação , Processamento Alternativo/efeitos dos fármacos , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromatina/efeitos dos fármacos , Homólogo 5 da Proteína Cromobox , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Splicing de RNA/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , Ribonucleoproteínas/genética
8.
IUBMB Life ; 64(10): 809-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941908

RESUMO

Serine/arginine-rich (SR) proteins are among the most studied splicing regulators. They constitute a family of evolutionarily conserved proteins that, apart from their initially identified and deeply studied role in splicing regulation, have been implicated in genome stability, chromatin binding, transcription elongation, mRNA stability, mRNA export and mRNA translation. Remarkably, this list of SR protein activities seems far from complete, as unexpected functions keep being unraveled. An intriguing aspect that awaits further investigation is how the multiple tasks of SR proteins are concertedly regulated within mammalian cells. In this article, we first discuss recent findings regarding the regulation of SR protein expression, activity and accessibility. We dive into recent studies describing SR protein auto-regulatory feedback loops involving different molecular mechanisms such asunproductive splicing, microRNA-mediated regulation and translational repression. In addition, we take into account another step of regulation of SR proteins, presenting new findings about a variety of post-translational modifications by proteomics approaches and how some of these modifications can regulate SR protein sub-cellular localization or stability. Towards the end, we focus in two recently revealed functions of SR proteins beyond mRNA biogenesis and metabolism, the regulation of micro-RNA processing and the regulation of small ubiquitin-like modifier (SUMO) conjugation.


Assuntos
Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Sequência Conservada , Retroalimentação Fisiológica , Humanos , MicroRNAs , Proteínas Nucleares/química , Proteínas Nucleares/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
9.
J Biol Chem ; 287(36): 30789-99, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22825850

RESUMO

Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a nucleocytoplasmic shuttling protein that is a key player in the p53-triggered DNA damage response, acting as a cofactor for p53 in response to DNA damage. hnRNP K is a substrate of the ubiquitin E3 ligase MDM2 and, upon DNA damage, is de-ubiquitylated. In sharp contrast with the role and consequences of the other post-translational modifications, nothing is known about the role of SUMO conjugation to hnRNP K in p53 transcriptional co-activation. In the present work, we show that hnRNP K is modified by SUMO in lysine 422 within its KH3 domain, and sumoylation is regulated by the E3 ligase Pc2/CBX4. Most interestingly, DNA damage stimulates hnRNP K sumoylation through Pc2 E3 activity, and this modification is required for p53 transcriptional activation. Abrogation of hnRNP K sumoylation leads to an aberrant regulation of the p53 target gene p21. Our findings link the DNA damage-induced Pc2 activation to the p53 transcriptional co-activation through hnRNP K sumoylation.


Assuntos
Dano ao DNA , Ribonucleoproteínas/metabolismo , Proteína SUMO-1/metabolismo , Sumoilação , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Humanos , Ligases , Proteínas do Grupo Polycomb/biossíntese , Proteínas do Grupo Polycomb/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ribonucleoproteínas/genética , Proteína SUMO-1/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
10.
J Cell Biochem ; 113(7): 2319-29, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22345078

RESUMO

Rac1b is an alternatively spliced isoform of the small GTPase Rac1 that includes the 57-nucleotide exon 3b. Rac1b was originally identified through its over-expression in breast and colorectal cancer cells, and has subsequently been implicated as a key player in a number of different oncogenic signaling pathways, including tumorigenic transformation of mammary epithelial cells exposed to matrix metalloproteinase-3 (MMP-3). Although many of the cellular consequences of Rac1b activity have been recently described, the molecular mechanism by which MMP-3 treatment leads to Rac1b induction has not been defined. Here we use proteomic methods to identify heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as a factor involved in Rac1 splicing regulation. We find that hnRNP A1 binds to Rac1 exon 3b in mouse mammary epithelial cells, repressing its inclusion into mature mRNA. We also find that exposure of cells to MMP-3 leads to release of hnRNP A1 from exon 3b and the consequent generation of Rac1b. Finally, we analyze normal breast tissue and breast cancer biopsies, and identify an inverse correlation between expression of hnRNP A1 and Rac1b, suggesting the existence of this regulatory axis in vivo. These results provide new insights on how extracellular signals regulate alternative splicing, contributing to cellular transformation and development of breast cancer.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Neuropeptídeos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Células Epiteliais , Feminino , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Glândulas Mamárias Animais , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas rac1 de Ligação ao GTP
11.
Proc Natl Acad Sci U S A ; 107(37): 16119-24, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20805487

RESUMO

Protein modification by conjugation of small ubiquitin-related modifier (SUMO) is involved in diverse biological functions, such as transcription regulation, subcellular partitioning, stress response, DNA damage repair, and chromatin remodeling. Here, we show that the serine/arginine-rich protein SF2/ASF, a factor involved in splicing regulation and other RNA metabolism-related processes, is a regulator of the sumoylation pathway. The overexpression of this protein stimulates, but its knockdown inhibits SUMO conjugation. SF2/ASF interacts with Ubc9 and enhances sumoylation of specific substrates, sharing characteristics with already described SUMO E3 ligases. In addition, SF2/ASF interacts with the SUMO E3 ligase PIAS1 (protein inhibitor of activated STAT-1), regulating PIAS1-induced overall protein sumoylation. The RNA recognition motif 2 of SF2/ASF is necessary and sufficient for sumoylation enhancement. Moreover, SF2/ASF has a role in heat shock-induced sumoylation and promotes SUMO conjugation to RNA processing factors. These results add a component to the sumoylation pathway and a previously unexplored role for the multifunctional SR protein SF2/ASF.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína SUMO-1/metabolismo , Linhagem Celular , Resposta ao Choque Térmico , Humanos , Proteínas Nucleares/genética , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina , Especificidade por Substrato , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
12.
J Cell Biochem ; 107(4): 826-33, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19441081

RESUMO

Post-splicing activities have been described for a subset of shuttling serine/arginine-rich splicing regulatory proteins, among them SF2/ASF. We showed that growth factors activate a Ras-PI 3-kinase-Akt/PKB signaling pathway that not only modifies alternative splicing of the fibronectin EDA exon, but also alters in vivo translation of reporter mRNAs containing the EDA binding motif for SF2/ASF, providing two co-regulated levels of isoform-specific amplification. Translation of most eukaryotic mRNAs is initiated via the scanning mechanism, which implicates recognition of the m7G cap at the mRNA 5'-terminus by the eIF4F protein complex. Several viral and cellular mRNAs are translated in a cap-independent manner by the action of cis-acting mRNA elements named internal ribosome entry sites that direct internal ribosome binding to the mRNA. Here we use bicistronic reporters that generate mRNAs carrying two open reading frames, one translated in a cap-dependent manner while the other by internal ribosome entry site-dependent initiation, to show that in vivo over-expression of SF2/ASF increases the ratio between cap-dependent and internal ribosome entry site-dependent translation. Consistently, knocking-down of SF2/ASF causes the opposite effect. Changes in expression levels of SF2/ASF also affect alternative translation of an endogenous mRNA, that one coding for fibroblast growth factor-2. These results strongly suggest a role for SF2/ASF as a regulator of alternative translation, meaning the generation of different proteins by the balance among these two translation initiation mechanisms, and expand the known potential of SF2/ASF to regulate proteomic diversity to the translation field.


Assuntos
Processamento Alternativo , Proteínas Nucleares/fisiologia , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas/genética , Proteoma/genética , Linhagem Celular , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Fases de Leitura Aberta , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA , Ribossomos/metabolismo , Fatores de Processamento de Serina-Arginina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA