RESUMO
This review aims to present current knowledge on the effects of honey bee products on animals based on in vivo studies, focusing on their application in clinical veterinary practice. Honey's best-proven effectiveness is in treating wounds, including those infected with antibiotic-resistant microorganisms, as evidenced in horses, cats, dogs, mice, and rats. Propolis manifested a healing effect in numerous inflammatory and painful conditions in mice, rats, dogs, and pigs and also helped in oncological cases in mice and rats. Bee venom is best known for its effectiveness in treating neuropathy and arthritis, as shown in dogs, mice, and rats. Besides, bee venom improved reproductive performance, immune response, and general health in rabbits, chickens, and pigs. Pollen was effective in stimulating growth and improving intestinal microflora in chickens. Royal jelly might be used in the management of animal reproduction due to its efficiency in improving fertility, as shown in rats, rabbits, and mice. Drone larvae are primarily valued for their androgenic effects and stimulation of reproductive function, as evidenced in sheep, chickens, pigs, and rats. Further research is warranted to determine the dose and method of application of honey bee products in animals.
RESUMO
Honey bees play a pivotal role in shaping ecosystems and sustaining human health as both pollinators and producers of health-promoting products. However, honey bee colony mortality is on the rise globally, driven by various factors, including parasites, pesticides, habitat loss, poor nutrition, and climate change. This has far-reaching consequences for the environment, economy, and human welfare. While efforts to address these issues are underway, the current progress in electron paramagnetic resonance (EPR) instrumentation affords using the immense potential of this magnetic resonance technique to study small samples such as honey bees. This paper presents the pioneering 2D in vivo EPR imaging experiment on a honey bee, revealing the ongoing redox-status of bees' intestines. This way, by monitoring the spatio-temporal changes of the redox-active spin-probes' EPR signal, it is possible to gain access to valuable information on the course of ongoing bees' pathologies and the prospect of following-up on the efficiency of applied therapies. Employing a selection of diverse spin-probes could further reveal pH levels and oxygen concentrations in bee tissues, allowing a noninvasive assessment of bee physiology. This approach offers promising strategies for safeguarding pollinators and understanding their biology, fostering their well-being and ecological harmony.
Assuntos
Intestinos , Abelhas/fisiologia , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Intestinos/fisiologia , OxirreduçãoRESUMO
To improve the genomic evaluation of milk-related traits in Holstein-Friesian (HF) cattle it is essential to identify the associated candidate genes. Novel SNP-based analyses, such as the genetic mapping of inherited diseases, GWAS, and genomic selection, have led to a new era of research. The aim of this study was to analyze the association of each individual SNP in Serbian HF cattle with milk production traits and inbreeding levels. The SNP 60 K chip Axiom Bovine BovMDv3 was deployed for the genotyping of 334 HF cows. The obtained genomic results, together with the collected phenotypic data, were used for a GWAS. Moreover, the identification of ROH segments was performed and served for inbreeding coefficient evaluation and ROH island detection. Using a GWAS, a polymorphism, rs110619097 (located in the intron of the CTNNA3 gene), was detected to be significantly (p < 0.01) associated with the milk protein concentration in the first lactation (adjusted to 305 days). The average genomic inbreeding value (FROH) was 0.079. ROH islands were discovered in proximity to genes associated with milk production traits and genomic regions under selection pressure for other economically important traits of dairy cattle. The findings of this pilot study provide useful information for a better understanding of the genetic architecture of milk production traits in Serbian HF dairy cows and can be used to improve lactation performances in Serbian HF cattle breeding programs.
RESUMO
One of the most important approaches in the prevention and treatment of nosemosis is the use of herbal preparations as food supplements for bees. Therefore, the aim of this study was to investigate the effects of a plant-based supplement branded as "B+" on honeybees in a laboratory experiment. Four experimental groups were established: treated group (T), N. ceranae-infected and treated group (IT), N. ceranae-infected group (I) and non-infected group (NI). Survival, N. ceranae spore load and oxidative stress parameters together with expression levels of antioxidant enzyme genes and vitellogenin gene were monitored. The mortality in the T, IT and NI groups was significantly (p < 0.001) lower than in than in the I group. Within Nosema-infected groups, the IT group had a significantly lower (p < 0.001) number of N. ceranae spores than the I group. In addition, expression levels of genes for antioxidant enzymes were lower (p < 0.001) in the IT group compared to the I group. The concentration of malondialdehyde and the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione S-transferase) were significantly lower (p < 0.001) in the IT group compared to the I group. No negative effects of the tested supplement were observed. All these findings indicate that the tested supplement exerted beneficial effects manifested in better bee survival, reduced N. ceranae spore number and reduced oxidative stress of bees (lower expression of genes for antioxidant enzymes and oxidative stress parameters).
RESUMO
Thymol is a natural essential oil derived from the plant Thymus vulgaris L. It is known to be beneficial for human and animal health and has been used in beekeeping practice against Varroa mite for years. In this study, the genotoxic and antigenotoxic potential of thymol were evaluated on the honey bee (Apis mellifera L.) continuous cell line AmE-711 for the first time. Using the Comet assay, three increasing concentrations (10, 100, and 1000 µg/mL) of thymol were tested. Negative control (non-treated cells) and positive control (cells treated with 100 µM H2O2) were also included. The absence of thymol cytotoxicity was confirmed with the Trypan blue exclusion test. Thymol in the concentration of 10 µg/mL did not increase DNA damage in AmE-711 honey bee cells, while 100 and 1000 µg/mL concentrations showed genotoxic effects. For testing the antigenotoxic effect, all concentrations of thymol were mixed and incubated with H2O2. The antigenotoxic effect against was absent at all concentrations (10, 100, 1000 µg/mL) tested. Moreover, thymol enhanced the H2O2-induced DNA migration in the Comet assay. The obtained results indicate genotoxic effects of thymol on cultured honey bee cells suggesting its careful application in beekeeping practice to avoid possible negative effects on honey bees.
RESUMO
With an almost global distribution, Varroa destuctor is the leading cause of weakening and loss of honey bee colonies. New substances are constantly being tested in order to find those that will exhibit high anti-Varroa efficacy at low doses/concentrations, without unwanted effects on bees. Lithium (Li) salts stood out as candidates based on previous research. The aims of this study were to evaluate Li citrate hydrate (Li-cit) for its contact efficacy against Varroa, but also the effect of Li-cit on honey bees by estimating loads of honey bee viruses, expression levels of immune-related genes and genes for antioxidative enzymes and oxidative stress parameters on two sampling occasions, before the treatment and after the treatment. Our experiment was performed on four groups, each consisting of seven colonies. Two groups were treated with the test compound, one receiving 5 mM and the other 10 mM of Li-cit; the third received oxalic acid treatment (OA group) and served as positive control, and the fourth was negative control (C group), treated with 50% w/v pure sucrose-water syrup. Single trickling treatment was applied in all groups. Both tested concentrations of Li-cit, 5 and 10 mM, expressed high varroacidal efficacy, 96.85% and 96.80%, respectively. Load of Chronic Bee Paralysis Virus significantly decreased (p < 0.01) after the treatment in group treated with 5 mM of Li-cit. In OA group, loads of Acute Bee Paralysis Virus and Deformed Wing Virus significantly (p < 0.05) increased, and in C group, loads of all viruses significantly (p < 0.01 or p < 0.001) increased. Transcript levels of genes for abaecin, apidaecin, defensin and vitellogenin were significantly higher (p < 0.05-p < 0.001), while all oxidative stress parameters were significantly lower (p < 0.05-p < 0.001) after the treatment in both groups treated with Li-cit. All presented results along with easy application indicate benefits of topical Li-cit treatment and complete the mosaic of evidence on the advantages of this salt in the control of Varroa.
RESUMO
Nosema ceranae is the most widespread microsporidian species which infects the honey bees of Apis mellifera by causing the weakening of their colonies and a decline in their productive and reproductive capacities. The only registered product for its control is the antibiotic fumagillin; however, in the European Union, there is no formulation registered for use in beekeeping. Thymol (3-hydroxy-p-cymene) is a natural essential-oil ingredient derived from Thymus vulgaris, which has been used in Varroa control for decades. The aim of this study was to investigate the effect of thymol supplementation on the expression of immune-related genes and the parameters of oxidative stress and bee survival, as well as spore loads in bees infected with the microsporidian parasite N. ceranae. The results reveal mostly positive effects of thymol on health (increasing levels of immune-related genes and values of oxidative stress parameters, and decreasing Nosema spore loads) when applied to Nosema-infected bees. Moreover, supplementation with thymol did not induce negative effects in Nosema-infected bees. However, our results indicate that in Nosema-free bees, thymol itself could cause certain disorders (affecting bee survival, decreasing oxidative capacity, and downregulation of some immune-related gene expressions), showing that one should be careful with preventive, uncontrolled, and excessive use of thymol. Thus, further research is needed to reveal the effect of this phytogenic supplement on the immunity of uninfected bees.
RESUMO
Depending on the infection level and colony strength, Nosema ceranae, a microsporidian endoparasite of the honey bee may have significant consequences on the health, reproduction and productivity of bee colonies. Despite exerting some side effects, fumagillin is most often used for Nosema control. In this study, in a cage experiment, N. ceranae infected bees were treated with fumagillin or the extract of Agaricus blazei mushroom, a possible alternative for Nosema control. Bee survival, Nosema spore loads, the expression levels of immune-related genes and parameters of oxidative stress were observed. Fumagillin treatment showed a negative effect on monitored parameters when applied preventively to non-infected bees, while a noticeable anti-Nosema effect and protection from Nosema-induced immunosuppression and oxidative stress were proven in Nosema-infected bees. However, a protective effect of the natural A. blazei extract was detected, without any side effects but with immunostimulatory activity in the preventive application. The results of this research suggest the potential of A. blazei extract for Nosema control, which needs to be further investigated.
RESUMO
During their lifetime honey bees (Apis mellifera) rarely experience optimal conditions. Sometimes, a simultaneous action of multiple stressors, natural and chemical, results in even greater effect than of any stressor alone. Therefore, integrative investigations of different factors affecting honey bees have to be carried out. In this study, adult honey bees exposed to thiamethoxam in larval and/or adult stage and infected with Nosema ceranae were examined. Newly emerged bees from colonies, non-treated or treated with thiamethoxam, were organized in six groups and kept in cages. Thiamethoxam treated bees were further exposed to either thiamethoxam or Nosema (groups TT and TN), or simultaneously to both (group TTN). Newly emerged bees from non-treated colonies were exposed to Nosema (group CN). From both, treated and non-treated colonies two groups were organized and further fed only with sugar solution (groups C and TC). Here, we present the expression profile of 19 genes in adult worker honey bees comprising those involved in immune, detoxification, development and apoptosis response. Results showed that gene expression patterns changed with time and depended on the treatment. In group TC at the time of emergence the majority of tested genes were downregulated, among which nine were significantly altered. The same gene pattern was observed on day six, where the only significantly upregulated gene was defensin-1. On day nine most of analyzed genes in all experimental groups showed upregulation compared to control group, where upregulation of antimicrobial peptide genes abaecin, defensin-1 and defensin-2 was significant in groups TT and TTN. On day 15 we observed a similar pattern of expression in groups TC and TT exposed to thiamethoxam only, where most of the detoxification genes were downregulated. Additionally RNA loads of Nosema and honey bee viruses were recorded. We detected a synergistic interaction of thiamethoxam and Nosema, reflected in lowest honey bee survival.
Assuntos
Abelhas/fisiologia , Inseticidas/toxicidade , Nosema , Tiametoxam/toxicidade , Animais , Peptídeos Catiônicos Antimicrobianos , Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Expressão Gênica , Infecções , Proteínas de Insetos , Larva/efeitos dos fármacos , Larva/microbiologia , Larva/fisiologia , Microsporidiose/veterináriaRESUMO
This study is aimed at analysing biochemical and genetic endpoints of toxic effects after administration of adrenaline. For this purpose, the study was carried out on Wistar rats and three doses of adrenaline were used: 0.75 mg/kg, 1.5 mg/kg, and 3 mg/kg body weight. To achieve these aims, we investigated the effects of adrenaline on catalase (CAT), Cu, Zn-superoxide dismutase (SOD), malondialdehyde (MDA), nitrite (NO2-), carbonyl groups (PCC), and nitrotyrosine (3-NT). Total activity of lactate dehydrogenase (LDH), its relative distribution (LDH1-LDH5) activity, level of acute phase proteins (APPs), and genotoxic effect were also evaluated. The obtained results revealed that all doses of adrenaline induced a significant rise in CAT activity, MDA level, PCC, NO2 -, and 3-NT and a significant decrease in SOD activity compared to control. Adrenaline exerted an increase in total activity of LDH, LDH1, and LDH2 isoenzymes. Further study showed that adrenaline significantly decreased serum albumin level and albumin-globulin ratio, while the level of APPs (α 1-acid glycoprotein and haptoglobulin) is increased. The micronucleus test revealed a genotoxic effect of adrenaline at higher concentrations (1.5 mg/kg and 3 mg/kg body weight) compared to untreated rats. It can be concluded that adrenaline exerts oxidative and nitrative stress in rats, increased damage to lipids and proteins, and damage of cardiomyocytes and cytogenetic damage. Obtained results may contribute to better understanding of the toxicity of adrenaline with aims to preventing its harmful effects.