RESUMO
Osteopontin (OPN) has been implicated in the pathology of several renal conditions. Recently, we demonstrated in vitro that aldosterone has important roles in collagen synthesis by inducing OPN (Irita J, Okura T, Kurata M, Miyoshi K, Fukuoka T, Higaki J. Hypertension 51: 507-513, 2008). The aim of the present study was to clarify the roles of OPN in aldosterone-mediated renal fibrosis by infusing aldosterone into either wild-type (WT) or OPN knockout mice (OPN(-/-)). We used uninephrectomized mice treated with aldosterone and high salt to exacerbate renal fibrosis. After 4 wk of treatment with aldosterone, we showed similar increases in systolic blood pressure in both strains of mice. Urine albumin excretion was greater in aldosterone-infused WT mice than in aldosterone-infused OPN(-/-) mice. Immunohistochemical analysis showed high levels of OPN expression in aldosterone-infused WT mice. Interstitial fibrosis and inflammatory infiltrations were increased in aldosterone-infused WT mice compared with either vehicle-infused WT or aldosterone-infused OPN(-/-) mice. These changes were ameliorated markedly by eplerenone treatment in aldosterone-infused WT mice. Aldosterone-infused WT mice also had increased expression of NADPH oxidase subunits compared with aldosterone-infused OPN(-/-) mice. We observed a marked increase in oxidative stress markers in aldosterone-infused WT mice compared with aldosterone-infused OPN(-/-) mice. These results indicate that OPN is a promoter of aldosterone-induced inflammation, oxidative stress, and interstitial fibrosis in the kidney and suggest that inhibition of OPN may be a potential therapeutic target for prevention of renal injury.