Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 255: 109927, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32063308

RESUMO

This study was aimed at the degradation of sulfonamides (SNs) via oxidation with Fe(VI). The reaction kinetics, identification of degradation byproducts and their toxicity were investigated. The pH solution and Fe(VI) loading had significant effects on the degradation of the sulfonamides. The maximum degradation rate occurred at pH 3.0 with a 6:1 ratio Fe(VI): sulfonamide, obtaining 100% degradation of 15 mg L-1 SN within 5 min. Although Fe(VI) also showed an appreciable reactivity towards SNs (kapp = 9.85-19.63 × 102 M-1 s-1) at pH 7. The influence of solution pH on the values of kapp can be explained considering the specific reaction between Fe(VI) and SNs. Degradation rates are also influenced by the presence of inorganic ions in different water matrixes. For this reason, ions present in groundwater enhanced the SNs degradation through a synergistic effect among carbonates, sulfates and Fe(VI). Degradation byproducts identified, through UPLC analysis, allowed us to proposed three degradation pathways depending on pH. At acid pH there is a cleavage of C-S and S-N bonds. At neutral pH nitroso and nitro-derivates are formed. At basic pH hydroxylation is the main reaction. The cytotoxicity assay of HEK-293 and J774 cell lines exposed to Fe(VI) indicated that transformation byproducts had a lower toxicity than SNs as baseline products. Accordingly, this research suggests that Fe(VI) can act as a chemical oxidant to remove SNs antibiotics and it can be used to treat antibiotic pollution in wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Ferro , Cinética , Oxirredução , Sulfonamidas
2.
RSC Adv ; 10(18): 10646-10660, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35492913

RESUMO

A controlled synthesis of methotrexate (MTX) silver nanoparticles (AgNPs-MTX) using borohydride and citrate as reduction and reduction/capping agents, respectively, was performed in order to obtain AgNPs-MTX conjugates with a narrow size distribution. Their characterization showed polydispersed spherical shape nanoparticles with a mean size around 13 nm and distribution range between 7-21 nm. The presence of MTX was confirmed by FTIR and EDX analysis. Spectroscopic determinations suggest the chemisorption of MTX through a carboxylic group (-COOH) onto AgNPs via the exchange with a citrate molecule. Drug loading capacities calculated for AgNPs synthesized using different amounts of MTX were 28, 31 and 40%. In vitro drug release tests depicted similar release profiles for all conjugated amounts releasing between 77 to 85% of the initial MTX loaded into the AgNPs. With respect to free MTX, the addition of the nanocarrier delayed its release and also changed its pharmacokinetics. Free MTX is released after 3 hours following a first order kinetic model, whereas in the presence of AgNPs, a fast initial release is observed during the first 5 hours, followed by a plateau after 24 hours. In this case, AgNPs-MTX fitted a Higuchi model, where its solubilization is controlled by a diffusion process. Results obtained from flow cytometry of different cell lines treated with AgNPs-MTX demonstrated the combined anticancer effect of both reagents, decreasing the percentage of living cells in a colon cancer cell line (HTC-116) down to 40% after 48 hours of exposure. This effect was weaker but still significant for a lung cancer cell line (A-549). Finally, a zebrafish assay with AgNPs-MTX did not show any significant cytotoxic effect, confirming thereby the reduction of systemic drug toxicity achieved by coupling MTX to AgNPs. This observed toxicity reduction in the zebrafish model implies also a probable improvement of the usage of AgNPs-MTX in chemotherapy against human cancers.

3.
J Environ Manage ; 253: 109731, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665690

RESUMO

This study proposes the use of new materials based on core-shell structure magnetic microparticles with Ag0 (Ag(0)-MPs) on their surface to remove bromides and chlorides from waters intended for human consumption. Hydrogen peroxide was used as oxidizing agent, Ag(0)-MPs is thereby oxidized to Ag (I)-MPs, which, when in contact with Cl- and Br- ions, form the corresponding silver halide (AgCl and AgBr) on the surface of Ag-MPs. The concentration of Cl- and Br- ions was followed by using ion selective electrodes (ISEs). Silver microparticles were characterized by high-resolution scanning electron microscopy and X-ray photoelectron spectroscopy, while the presence of AgCl and AgBr on Ag-MPs was determined by microanalysis. We analyzed the influence of operational variables, including: hydrogen peroxide concentration in Ag-MP system, medium pH, influence of Cl- ions on Br- ion removal, and influence of tannic acid as surrogate of organic matter in the medium. Regarding the influence of pH, Br-and Cl- removal was constant within the pH range studied (3.5-7), being more effective for Br- than for Cl- ions. Accordingly, this research states that the system Ag-MPs/H2O2 can remove up to 67.01% of Br- ions and 56.92% of Cl- ions from water (pH = 7, [Ag-MPs]0 = 100 mg L-1, [H2O2]0 = 0.2 mM); it is reusable, regenerated by radiation and can be easily removed by applying a magnetically assisted chemical separation process.


Assuntos
Iodetos , Prata , Brometos , Cloretos , Peróxido de Hidrogênio
4.
J Environ Manage ; 257: 109973, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868639

RESUMO

The objective of this study was to analyse the effectiveness of advanced oxidation processes (AOPs) with Solar and UV radiation (UV/H2O2, UV/K2S2O8) for the degradation of hydrochlorothiazide (HCTZ), a widely used diuretic drug, in aqueous solution focusing on the influence of four experimental parameters: initial concentration of HCTZ, solution pH, nature of the water matrix, and initial concentration of radicals. The obtained results showed that using both kinds of direct photolysis (UV and Solar), the percentage of degraded HCTZ was low, but there was a decrease in the degradation rate favored by the increase of the initial concentration of this pollutant. In addition, the degradation rates were higher at acid pHs. With regard to the nature of water, the degradation rate varied in the order: ultrapure > superficial > tap water. This is due to the presence of organic and inorganic matter (bicarbonates, nitrates, and chlorides) in surface and tap water, that react with the radicals generated, which reduces the availability of radical species, generating competitive kinetics. The presence of radical-promoter species increased the degradation rate of the pollutant, reaching a degradation of 100% of HCTZ after 20 min of treatment. The results obtained point out that the degradation rate was higher in the presence of HO radicals. This behavior was attributed to the higher oxidation power of HO versus radicals. The determination of the degradation by-products led to structures very similar to the parent compound. For example, the corresponding hydroxylated dechlorinated derivative of HCTZ was found in all the systems used. The cytotoxicity test showed that these byproducts have a lower toxicity than the original product. Finally, the economic viability study confirmed that the UV/K2S2O8 system has the lowest cost.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Diuréticos , Hidroclorotiazida , Peróxido de Hidrogênio , Cinética , Oxirredução , Fotólise , Raios Ultravioleta
5.
Sci Total Environ ; 650(Pt 1): 1207-1215, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308808

RESUMO

In this study, a nickel organic xerogel (X-Ni) was used as semiconductor photocatalyst for the degradation of the herbicide diuron (DRN) in aqueous solution. The main objective of this work was to analyze and compare the effectiveness of solar irradiation to remove DRN from water both by direct photolysis and photocatalytic degradation. We examined the influence of the initial concentration of the herbicide, the solution pH, the presence of different ions in the medium, the chemical composition of the water, and the presence of a photocatalyst, after 240 min of irradiation. Direct photolysis achieved a low percentage of DRN degradation but was favored: i) by a reduction in the initial concentration of the herbicide (from 35.6% to 79.0% for 0.150 × 10-3 mol/L and 0.021 × 10-3 mol/L of DRN, respectively) and ii) at solution pHs at which diuron is positively charged (78.6% for pH 2 and 50.4% for pH 7), as suggested by DFT calculations carried out for DRN and its protonated form (DRN-H+). The corresponding mono-demethylated DRN derivative, 1-(3,4-dichlorophenyl)-3-methylurea (DCPU), was identified as a DRN degradation byproduct. In addition, the presence of certain anions in the medium significantly affected the overall degradation process by direct photolysis, due to the additional generation of HO radicals. We highlight that the presence of X-Ni considerably improved the photodegradation process under solar irradiation. The photocatalytic degradation rate constant was directly proportional to the xerogel concentration, because an increase in catalyst dose produced an increase in surface active sites for the photodegradation of DRN, enhancing the overall efficiency of the process. Thus, when 4167 mg/g of X-Ni was added, the DRN removal rate was 3-fold higher and both percentage of degradation and mineralization increased 88.5% with respect to the results obtained by direct photolysis.

6.
J Environ Manage ; 225: 224-231, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30092549

RESUMO

The objective of this study was to analyze the effectiveness of UVC, UVC/H2O2 and UVC/K2S2O8 on the degradation of SAs. Rate constant values increased in the order SMZ < SDZ < SML and showed the higher photodegradation of sulfonamides with a penta-heterocycle. Quantum yields were 1.72 × 10-5 mol E-1, 3.02 × 10-5 mol E-1, and 6.32 × 10-5 mol E-1 for SMZ, SDZ and SML, respectively, at 60 min of treatment. R254 values show that the dose habitually utilized for water disinfection is inadequate to remove this type of antibiotic. The initial sulfonamide concentration has a major impact on the degradation rate. The degradation rates were higher at pH 12 for SMZ and SML. SMZ and SML photodegradation kλ values are higher in tap versus distilled water. The presence of radical promoters generates a greater increase in the degradation rate, UVC/K2S2O8 cost less energy, a mechanism was proposed, and the degradation by-products are less toxic than the original product.


Assuntos
Peróxido de Hidrogênio , Sulfonamidas/química , Poluentes Químicos da Água , Cinética , Oxirredução , Fotólise , Raios Ultravioleta , Purificação da Água
7.
J Environ Manage ; 213: 549-554, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29472036

RESUMO

The objective of this study was to determine the influence of different operational variables on fluoride (F-) removal from waters using lanthanum (La)-doped silica xerogels and the mechanisms involved in this process. Accordingly, four xerogels were synthesized, one acting as blank (X-B), two doped with LaCl3 and dried at different temperatures (X-LaCl and X-LaCl-M), and a fourth doped with La2O3 (X-LaO). The results show that fluorides are only removed when La-doped xerogels are utilized. In addition, X-LaCl yielded the highest adsorption capacity, removing 28.44% of the initial fluoride concentration at a solution pH of 7. Chemical characterization of materials confirmed that fluoride removal from waters is due to the precipitation of LaF3 on the surface of La-doped xerogels. The presence of dissolved organic matter on the aqueous solution also reduce the removal capacity of La xerogels. Finally, analysis of the influence of solution pH revealed that the adsorption capacity of all xerogels was highest at a solution pH of 7.


Assuntos
Fluoretos/isolamento & purificação , Lantânio , Purificação da Água , Adsorção , Fluoretos/química , Concentração de Íons de Hidrogênio , Dióxido de Silício , Poluentes Químicos da Água
8.
Sci Total Environ ; 607-608: 649-657, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28709099

RESUMO

The objective of this study was to remove halides from waters by silver nanoparticles (AgNPs) and hydrogen peroxide (H2O2). The experimental parameters were optimized and the mechanism involved was also determined. The AgNP/H2O2 process proved efficacious for bromide and chloride removal from water through the selective precipitation of AgCl and AgBr on the AgNP surface. The optimal AgNP and H2O2 concentrations to be added to the solution were determined for the halide concentrations under study. The removal of Cl- and Br- anions was more effective at basic pH, reaching values of up to 100% for both ions. The formation of OH, O2-, radicals was detected during the oxidation of Ag(0) into Ag(I), determining the reaction mechanism as a function of solution pH. Moreover, the results obtained show that: i) the efficacy of the oxidation of Ag(0) into Ag(I) is higher at pH11, ii) AgNPs can be generated by the O2- radical formation, and iii) the presence of NaCl and dissolved organic matter (tannic acid [TAN]) on the solution matrix reduces the efficacy of bromide removal from the medium due to: i) precipitation of AgCl on the AgNP surface, and ii) the radical scavenger capacity of TAN. AgNPs exhausted can be regenerated by using UV or solar light, and toxicity test results show that AgNPs inhibit luminescence of Vibrio fischeri bacteria.

9.
J Environ Manage ; 169: 116-25, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26731310

RESUMO

This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion.


Assuntos
Café , Diatrizoato/química , Dimetridazol/química , Metronidazol/química , Prunus dulcis/química , Purificação da Água/métodos , Adsorção , Carvão Vegetal/química , Diatrizoato/análise , Difusão , Cinética , Metronidazol/análise
10.
J Colloid Interface Sci ; 436: 276-85, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25280372

RESUMO

The adsorption of the antibiotic metronidazole (MNZ) on activated carbon (F400), activated carbon cloth (ACF), mesoporous activated carbon (CMK-3), and carbon nanotubes (MWCNT) was investigated in this work. The effect of the adsorbent-adsorbate interactions as well as the operating conditions (ionic strength, solution pH, temperature, chemical modification of the adsorbents by HNO3 treatment, and water matrix) on the adsorption capacity were analyzed to substantiate the adsorption mechanism. The adsorption capacity markedly varied as function of the carbon material, decreasing in the following order: F400>ACF>F400-HNO3>CMK-3>MWCNT>MWCNT-HNO3, and depended not only on their surface area and pore size distribution, but also on their chemical nature. The adsorption of MNZ was influenced by the solution pH, but was not significantly affected by the ionic strength and temperature. The adsorption of MNZ was enhanced when the MNZ solutions were prepared using wastewater. Therefore, the electrolytes present in the wastewater cooperated rather than competed with the MNZ molecules for the adsorption sites. Desorption equilibrium data of MNZ on all carbon materials demonstrated that the adsorption was reversible corroborating the weakness of the adsorbent-adsorbate interactions.


Assuntos
Anti-Infecciosos/isolamento & purificação , Carbono/química , Metronidazol/isolamento & purificação , Adsorção , Anti-Infecciosos/química , Concentração de Íons de Hidrogênio , Metronidazol/química , Água/química
11.
J Colloid Interface Sci ; 401: 116-24, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623410

RESUMO

The objective of this study was to analyze the equilibrium and adsorption kinetics of nitroimidazoles on activated carbon cloth (ACC), determining the main interactions responsible for the adsorption process and the diffusion mechanism of these compounds on this material. The influence of the different operational variables, such as ionic strength, pH, temperature, and type of water (ultrapure, surface, and waste), was also studied. The results obtained show that the ACC has a high capacity to adsorb nitroimidazoles in aqueous solution. Electrostatic interactions play an important role at pH<3, which favors the repulsive forces between dimetridazole or metronidazole and the ACC surface. The formation of hydrogen bonds and dispersive interactions play the predominant role at higher pH values. Modifications of the ACC with NH3, K2S2O8, and O3 demonstrated that its surface chemistry plays a predominant role in nitroimidazole adsorption on this material. The adsorption capacity of ACC is considerably high in surface waters and reduced in urban wastewater, due to the levels of alkalinity and dissolved organic matter present in the different types of water. Finally, the results of applying kinetic models revealed that the global adsorption rate of dimetridazole and metronidazole is controlled by intraparticle diffusion.


Assuntos
Carbono/química , Nitroimidazóis/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Soluções , Propriedades de Superfície , Temperatura , Água/química
12.
J Hazard Mater ; 217-218: 76-84, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22472426

RESUMO

The objective of this study was to optimize the preparation of treatment plant wastewater sludge adsorbents for application in water treatment. The optimal adsorption capacity was obtained with adsorbents prepared by pyrolysis at 700°C for 3h. We studied the effect of binder type on the adsorbents, finding that their textural properties were not substantially affected by the addition of phenolic resins but their surface area was reduced by the presence of clayey soil. Analysis of the composition of surface groups in these materials revealed: (i) a high concentration of basic surface groups in non-activated pyrolyzed sludge, (ii) an increase in the concentration of basic surface groups after chemical activation, (iii) no modification in the concentration of carboxyl or basic groups with the addition of binding agent before the activation, and (iv) total disappearance of carbonyl groups from sample surfaces with the addition of humic acid or clayey soil as binder. All these adsorbents had a low C content. The capacity of these sludge-derived materials to adsorb methylene blue, 2,4-dichlorophenol, tetracycline, and (Cd(II)) was studied. Their adsorption capacity was considerably increased by the chemical activation but reduced by the pre-activation addition of a binding agent (humic acid, phenolic resin, and clayey soil).


Assuntos
Esgotos , Poluentes da Água/química , Adsorção
13.
J Hazard Mater ; 187(1-3): 1-23, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21306824

RESUMO

The main objective of this study was to list and compare the advantages and disadvantages of different methodologies to modify the surface of activated carbons (ACs) for their application as adsorbents to remove organic and inorganic pollutants from aqueous phase. These methodologies have been categorized into four broad groups: oxidation, sulfuration, ammonification, and coordinated ligand anchorage. Numerous investigations into the removal of metals from water have modified carbon surfaces to increase their content of acidic surface functional groups by using H(2)O(2), O(3) and HNO(3). Because these treatments can reduce the AC surface area, researchers are seeking alternative methods to modify and/or create surface functional groups without the undesirable effect of pore blockage. The nitrogenation or sulfuration of the AC surface can increase its basicity favoring the adsorption of organic compounds. The introduction of nitrogen or sulfur complexes on the carbon surface increases the surface polarity and, therefore, the specific interaction with polar pollutants. Different coordinated ligands have also been used to modify ACs, showing that coordinated ligand anchorage on the AC surface modifies its textural and chemical properties, but research to date has largely focused on the use of these modified materials to remove heavy metals from water by complexes formation.


Assuntos
Carbono/química , Poluentes da Água/isolamento & purificação , Abastecimento de Água
14.
Water Res ; 45(1): 393-403, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20850862

RESUMO

The objective of this study was to analyze the efficacy of ultraviolet (UV) radiation in the direct photodegradation of nitroimidazoles. For this purpose, i) a kinetic study was performed, determining the quantum yield of the process; and ii) the influence of the different operational variables was analyzed (initial concentration of antibiotic, pH, presence of natural organic matter compounds, and chemical composition of water), and the time course of total organic carbon (TOC) concentration and toxicity during nitroimidazole photodegradation was studied. The very low quantum yields obtained for the four nitroimidazoles are responsible for the low efficacy of the quantum process during direct photon absorption in nitroimidazole phototransformation. The R(254) values obtained show that the dose habitually used for water disinfection is not sufficient to remove this type of pharmaceutical; therefore, higher doses of UV irradiation or longer exposure times are required for their removal. The time course of TOC and toxicity during direct photodegradation (in both ultrapure and real water) shows that oxidation by-products are not oxidized to CO(2) to the desired extent, generating oxidation by-products that are more toxic than the initial product. The concentration of nitroimidazoles has a major effect on their photodegradation rate. The study of the influence of pH on the values of parameters ɛ (molar absorption coefficient) and k'(E) (photodegradation rate constant) showed no general trend in the behavior of nitroimidazoles as a function of the solution pH. The components of natural organic matter, gallic acid (GAL), tannic acid (TAN) and humic acid (HUM), may act as promoters and/or inhibitors of OH· radicals via photoproduction of H(2)O(2). The effect of GAL on the metronidazole (MNZ) degradation rate markedly differed from that of TAN or HUM, with a higher rate at low GAL concentrations. Differences in MNZ degradation rate among waters with different chemical composition are not very marked, although the rate is slightly lower in wastewaters, mainly due to the UV radiation filter effect of this type of water.


Assuntos
Antibacterianos/química , Antibacterianos/efeitos da radiação , Nitroimidazóis/química , Nitroimidazóis/efeitos da radiação , Fotólise , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
15.
J Colloid Interface Sci ; 345(2): 481-90, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20193953

RESUMO

The adsorption kinetics of four nitroimidazoles, Dimetridazole (DMZ), Metronidazole (MNZ), Ronidazole (RNZ) and Tinidazole (TNZ), were studied on three activated carbons: two commercial carbons from Sorbo-Norit (S) and Merck (M) and a third prepared by chemical activation of petroleum coke (C). Experimental data of the corresponding adsorption kinetics were analyzed by applying pseudo-first and pseudo-second-order models and a general diffusion model. Application of pseudo-first and pseudo-second-order kinetic models verified the following: (i) The kinetic model used that better predicts the adsorption rates depends of both the adsorbent and adsorbate studied. (ii) Nitroimidazole adsorption rate decreases in the order MNZ>DMZ>RNZ>TNZ; therefore, in the case of MNZ, molecular size does not appear to be a determining factor in the process. (iii) Nitroimidazole adsorption rate on carbons increases in the order C

Assuntos
Antibacterianos/química , Carvão Vegetal/química , Modelos Químicos , Nitroimidazóis/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Cinética
16.
J Hazard Mater ; 174(1-3): 880-6, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19815338

RESUMO

The main objective of the present study was to analyze the efficacy of technologies based on ozone and activated carbon in dynamic regime to remove organic micropollutants from waters, using the antibiotic tinidazole (TNZ) as a model compound. Results obtained in static regime show that the presence of activated carbon (GAC) during tinidazole ozonation: (i) increases its removal rate, (ii) reduces oxidation by-product toxicity, and (iii) reduces the concentration of dissolved organic matter. Study of the ozone/activated carbon system in dynamic regime showed that ozonation of tinidazole before the adsorption process considerably improves column performance, increasing the volume of water treated. It was observed that the efficacy of the treatment considerably increased with a shorter contact time between TNZ and O(3) streams before entering the column allowing a much higher volume of TNZ solution to be treated compared with the use of activated carbon alone, and reducing by 75% the amount of activated carbon required per unit of treated water volume. TNZ removal by the O(3)/GAC system is lower in natural waters and especially in wastewaters, than in ultrapure water. The toxicity results obtained during TNZ treatment with O(3)/GAC system showed that toxicity was directly proportional to the concentration of TNZ in the effluent, verifying that oxidation of the organic matter in the natural waters did not increase the toxicity of the system.


Assuntos
Carbono/química , Ozônio/química , Tinidazol/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Cromatografia Líquida de Alta Pressão
17.
Water Res ; 43(16): 4028-36, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19541339

RESUMO

The main objectives of this study were: (1) to investigate the decomposition and mineralization of nitroimidazoles (Metronidazole [MNZ], Dimetridazole [DMZ], and Tinidazole [TNZ]) in waste and drinking water using gamma irradiation; (2) to study the decomposition kinetics of these nitroimidazoles; and (3) to evaluate the efficacy of nitroimidazole removal using radical promoters and scavengers. The results obtained showed that nitroimidazole concentrations decreased with increasing absorbed dose. No differences in irradiation kinetic constant were detected for any nitroimidazole studied (0.0014-0.0017 Gy(-1)). The decomposition yield was higher under acidic conditions than in neutral and alkaline media. Results obtained showed that, at appropriate concentrations, H(2)O(2) accelerates MNZ degradation by generating additional HO(); however, when the dosage of H(2)O(2) exceeds the optimal concentration, the efficacy of MNZ degradation is reduced. The presence of t-BuOH (HO() radical scavenger) and thiourea (HO(), H() and e(aq)(-) scavenger) reduced the MNZ irradiation rate, indicating that degradation of this pollutant can take place via two pathways: oxidation by HO() radicals and reduction by e(aq)(-) and H(). MNZ removal rate was slightly lower in subterranean and surface waters than in ultrapure water and was markedly lower in wastewater. Regardless of the water chemical composition, MNZ gamma irradiation can achieve i) a decrease in the concentration of dissolved organic carbon, and ii) a reduction in the toxicity of the system with higher gamma absorbed dose.


Assuntos
Anti-Infecciosos/efeitos da radiação , Raios gama , Nitroimidazóis/efeitos da radiação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/efeitos da radiação , Anti-Infecciosos/análise , Dimetridazol/análise , Dimetridazol/efeitos da radiação , Peróxido de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Cinética , Metronidazol/análise , Metronidazol/efeitos da radiação , Nitroimidazóis/análise , Tioureia/análise , Tinidazol/análise , Tinidazol/efeitos da radiação , Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , terc-Butil Álcool/análise
18.
J Hazard Mater ; 170(1): 298-305, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19464791

RESUMO

The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.


Assuntos
Antibacterianos/isolamento & purificação , Carvão Vegetal/química , Nitroimidazóis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Bactérias , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Soluções , Purificação da Água/métodos
19.
Water Res ; 43(6): 1621-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19147173

RESUMO

The present study investigates the efficacy of various oxidizing treatments (ClO(-), ClO(2), KMnO(4), O(3), O(3)/H(2)O(2), O(3)/activated carbon) to remove from waters sodium dodecylbenzenesulphonate (SDBS), considered as model surfactant. Results obtained show that the use of ClO(-) and ClO(2) does not cause appreciable SDBS degradation. Additionally, in the case of ClO(-), trihalomethanes are generated, increasing system toxicity. Because the reaction kinetics between SDBS and KMnO(4) is very slow, a decrease in contaminant concentration is not observed, even at very acid pH values. SDBS reactivity with ozone is very low, with a kinetic constant (k(O)(3)) of 3.68 M(-1)s(-1), but its reactivity with HO() radicals is very high (k(OH)=1.16 x 10(10)M(-1)s(-1)), therefore O(3)/H(2)O(2) and O(3)/activated carbon, which can also generate HO(), appear as promising advanced oxidation processes to remove this contaminant from waters. The method based on ozone and activated carbon was the only process studied that produced both an increase in SDBS removal rate (due to the generation of HO() radicals in the O(3)-PAC or O(3)-GAC interaction) and a considerable reduction in the concentration of dissolved organic carbon in the system due to the PAC adsorbent properties.


Assuntos
Benzenossulfonatos/isolamento & purificação , Cloro , Benzenossulfonatos/química , Benzenossulfonatos/toxicidade , Cromatografia Gasosa , Peróxido de Hidrogênio , Indicadores e Reagentes , Cinética , Oxidantes , Oxirredução , Ozônio , Percloratos , Compostos de Potássio , Permanganato de Potássio , Tensoativos
20.
Water Res ; 42(15): 4163-71, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18762314

RESUMO

The main objective of this study was to analyze the effectiveness of technologies based on the use of ozone and activated carbon for the removal of nitroimidazoles from water, considering them as model of pharmaceutical compounds. A study was undertaken of the influence of the different operational variables on the effectiveness of each system studied (O(3), O(3)/activated carbon), and on the kinetics involved in each process. Ozone reaction kinetics showed that nitroimidazoles have a low reactivity, with K(O)(3) values <350 M(-1)s(-1) regardless of the nitroimidazole and solution pH considered. However, nitroimidazoles have a high affinity for HO radicals, with radical rate constant (k(HO)) values of around 10(10)M(-1)s(-1). Among the nitroimidazole ozonation by-products, nitrate ions and 3-acetyl-2-oxazolidinone were detected. The presence of activated carbon during nitroimidazole ozonation produces (i) an increase in the removal rate, (ii) a reduction in the toxicity of oxidation by-products, and (iii) a reduction in the concentration of dissolved organic matter. These results are explained by the generation of HO radicals at the O(3)-activated carbon interface.


Assuntos
Carbono/química , Nitroimidazóis/isolamento & purificação , Ozônio/química , Purificação da Água/métodos , Carvão Vegetal/química , Radical Hidroxila/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nitroimidazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA