Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 1(6): 786-794, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34240079

RESUMO

Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that n-alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1-5 µm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (ca. 3 µm) and catalyzes Brönsted rather than Lewis acid reactions. These results open new avenues not only in the use of ionic liquids as acid catalysts/solvents but also in the preparation of surfactant-free, well-defined ionic liquid microemulsions.

2.
Angew Chem Int Ed Engl ; 59(10): 3846-3849, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31538394

RESUMO

The carbonyl-olefin metathesis reaction has experienced significant advances in the last seven years with new catalysts and reaction protocols. However, most of these procedures involve soluble catalysts for intramolecular reactions in batch. Herein, we show that recoverable, inexpensive, easy to handle, non-toxic, and widely available simple solid acids, such as the aluminosilicate montmorillonite, can catalyze the intermolecular carbonyl-olefin metathesis of aromatic ketones and aldehydes with vinyl ethers in-flow, to give alkenes with complete trans stereoselectivity on multi-gram scale and high yields. Experimental and computational data support a mechanism based on a carbocation-induced Grob fragmentation. These results open the way for the industrial implementation of carbonyl-olefin metathesis over solid catalysts in continuous mode, which is still the origin and main application of the parent alkene-alkene cross-metathesis.

3.
Nat Commun ; 10(1): 509, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705264

RESUMO

Group 15 elements in zero oxidation state (P, As, Sb and Bi), also called pnictogens, are rarely used in catalysis due to the difficulties associated in preparing well-structured and stable materials. Here, we report on the synthesis of highly exfoliated, few layer 2D phosphorene and antimonene in zero oxidation state, suspended in an ionic liquid, with the native atoms ready to interact with external reagents while avoiding aerobic or aqueous decomposition pathways, and on their use as efficient catalysts for the alkylation of nucleophiles with esters. The few layer pnictogen material circumvents the extremely harsh reaction conditions associated to previous superacid-catalyzed alkylations, by enabling an alternative mechanism on surface, protected from the water and air by the ionic liquid. These 2D catalysts allow the alkylation of a variety of acid-sensitive organic molecules and giving synthetic relevancy to the use of simple esters as alkylating agents.

4.
Angew Chem Int Ed Engl ; 58(17): 5763-5768, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30675972

RESUMO

The chemical bulk reductive covalent functionalization of thin-layer black phosphorus (BP) using BP intercalation compounds has been developed. Through effective reductive activation, covalent functionalization of the charged BP by reaction with organic alkyl halides is achieved. Functionalization was extensively demonstrated by means of several spectroscopic techniques and DFT calculations; the products showed higher functionalization degrees than those obtained by neutral routes.

5.
J Am Chem Soc ; 140(9): 3215-3218, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29460623

RESUMO

The reactive nature of carbenes can be modulated, and ultimately reversed, by receiving additional electron density from a metal. Here, it is shown that Au nanoparticles (NPs) generate an electron-rich carbene on surface after transferring electron density to the carbonyl group of an in situ activated diazoacetate, as assessed by Fourier transformed infrared (FT-IR) spectroscopy, magic angle spinning nuclear magnetic resonance (MAS NMR), and Raman spectroscopy. Density functional theory (DFT) calculations support the observed experimental values and unveil the participation of at least three different Au atoms during carbene stabilization. The surface stabilized carbene shows an extraordinary stability against nucleophiles and reacts with electrophiles to give new products. These findings showcase the ability of catalytic Au NPs to inject electron density in energetically high but symmetrically allowed valence orbitals of sluggish molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA