Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Intensive Care Med ; 49(10): 1168-1180, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620561

RESUMO

PURPOSE: Survivors after acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19) are at high risk of developing respiratory sequelae and functional impairment. The healthcare crisis caused by the pandemic hit socially disadvantaged populations. We aimed to evaluate the influence of socio-economic status on respiratory sequelae after COVID-19 ARDS. METHODS: We carried out a prospective multicenter study in 30 French intensive care units (ICUs), where ARDS survivors were pre-enrolled if they fulfilled the Berlin ARDS criteria. For patients receiving high flow oxygen therapy, a flow ≥ 50 l/min and an FiO2 ≥ 50% were required for enrollment. Socio-economic deprivation was defined by an EPICES (Evaluation de la Précarité et des Inégalités de santé dans les Centres d'Examens de Santé - Evaluation of Deprivation and Inequalities in Health Examination Centres) score ≥ 30.17 and patients were included if they performed the 6-month evaluation. The primary outcome was respiratory sequelae 6 months after ICU discharge, defined by at least one of the following criteria: forced vital capacity < 80% of theoretical value, diffusing capacity of the lung for carbon monoxide < 80% of theoretical value, oxygen desaturation during a 6-min walk test and fibrotic-like findings on chest computed tomography. RESULTS: Among 401 analyzable patients, 160 (40%) were socio-economically deprived and 241 (60%) non-deprived; 319 (80%) patients had respiratory sequelae 6 months after ICU discharge (81% vs 78%, deprived vs non-deprived, respectively). No significant effect of socio-economic status was identified on lung sequelae (odds ratio (OR), 1.19 [95% confidence interval (CI), 0.72-1.97]), even after adjustment for age, sex, most invasive respiratory support, obesity, most severe P/F ratio (adjusted OR, 1.02 [95% CI 0.57-1.83]). CONCLUSIONS: In COVID-19 ARDS survivors, socio-economic status had no significant influence on respiratory sequelae 6 months after ICU discharge.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2 , COVID-19/complicações , Estudos Prospectivos , Status Econômico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , Oxigênio
3.
Nat Commun ; 13(1): 4691, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948538

RESUMO

Clostridium acetobutylicum is a promising biocatalyst for the renewable production of n-butanol. Several metabolic strategies have already been developed to increase butanol yields, most often based on carbon pathway redirection. However, it has previously demonstrated that the activities of both ferredoxin-NADP+ reductase and ferredoxin-NAD+ reductase, whose encoding genes remain unknown, are necessary to produce the NADPH and the extra NADH needed for butanol synthesis under solventogenic conditions. Here, we purify, identify and partially characterize the proteins responsible for both activities and demonstrate the involvement of the identified enzymes in butanol synthesis through a reverse genetic approach. We further demonstrate the yield of butanol formation is limited by the level of expression of CA_C0764, the ferredoxin-NADP+ reductase encoding gene and the bcd operon, encoding a ferredoxin-NAD+ reductase. The integration of these enzymes into metabolic engineering strategies introduces opportunities for developing a homobutanologenic C. acetobutylicum strain.


Assuntos
Clostridium acetobutylicum , Butanóis/metabolismo , Clostridium/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Elétrons , Fermentação , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
4.
BMJ Open ; 12(4): e057368, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459672

RESUMO

INTRODUCTION: Prognosis of patients with COVID-19 depends on the severity of the pulmonary affection. The most severe cases may progress to acute respiratory distress syndrome (ARDS), which is associated with a risk of long-term repercussions on respiratory function and neuromuscular outcomes. The functional repercussions of severe forms of COVID-19 may have a major impact on quality of life, and impair the ability to return to work or exercise. Social inequalities in healthcare may influence prognosis, with socially vulnerable individuals more likely to develop severe forms of disease. We describe here the protocol for a prospective, multicentre study that aims to investigate the influence of social vulnerability on functional recovery in patients who were hospitalised in intensive care for ARDS caused by COVID-19. This study will also include an embedded qualitative study that aims to describe facilitators and barriers to compliance with rehabilitation, describe patients' health practices and identify social representations of health, disease and care. METHODS AND ANALYSIS: The "Functional Recovery From Acute Respiratory Distress Syndrome (ARDS) Due to COVID-19: Influence of Socio-Economic Status" (RECOVIDS) study is a mixed-methods, observational, multicentre cohort study performed during the routine follow-up of post-intensive care unit (ICU) functional recovery after ARDS. All patients admitted to a participating ICU for PCR-proven SARS-CoV-2 infection and who underwent chest CT scan at the initial phase AND who received respiratory support (mechanical or not) or high-flow nasal oxygen, AND had ARDS diagnosed by the Berlin criteria will be eligible. The primary outcome is the presence of lung sequelae at 6 months after ICU discharge, defined either by alterations on pulmonary function tests, oxygen desaturation during a standardised 6 min walk test or fibrosis-like pulmonary findings on chest CT. Patients will be considered to be socially disadvantaged if they have an "Evaluation de la Précarité et des Inégalités de santé dans les Centres d'Examen de Santé" (EPICES) score ≥30.17 at inclusion. ETHICS AND DISSEMINATION: The study protocol and the informed consent form were approved by an independent ethics committee (Comité de Protection des Personnes Sud Méditerranée II) on 10 July 2020 (2020-A02014-35). All patients will provide informed consent before participation. Findings will be published in peer-reviewed journals and presented at national and international congresses. TRIAL REGISTRATION NUMBER: NCT04556513.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , COVID-19/complicações , Estudos de Coortes , Humanos , Oxigênio , Estudos Prospectivos , Qualidade de Vida , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2 , Classe Social , Resultado do Tratamento
5.
Obesity (Silver Spring) ; 29(9): 1477-1486, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33966355

RESUMO

OBJECTIVE: Previous studies have unveiled a relationship between the severity of coronavirus disease 2019 (COVID-19) pneumonia and obesity. The aims of this multicenter retrospective cohort study were to disentangle the association of BMI and associated metabolic risk factors (diabetes, hypertension, hyperlipidemia, and current smoking status) in critically ill patients with COVID-19. METHODS: Patients admitted to intensive care units for COVID-19 in 21 centers (in Europe, Israel, and the United States) were enrolled in this study between February 19, 2020, and May 19, 2020. Primary and secondary outcomes were the need for invasive mechanical ventilation (IMV) and 28-day mortality, respectively. RESULTS: A total of 1,461 patients were enrolled; the median (interquartile range) age was 64 years (40.9-72.0); 73.2% of patients were male; the median BMI was 28.1 kg/m2 (25.4-32.3); a total of 1,080 patients (73.9%) required IMV; and the 28-day mortality estimate was 36.1% (95% CI: 33.0-39.5). An adjusted mixed logistic regression model showed a significant linear relationship between BMI and IMV: odds ratio = 1.27 (95% CI: 1.12-1.45) per 5 kg/m2 . An adjusted Cox proportional hazards regression model showed a significant association between BMI and mortality, which was increased only in obesity class III (≥40; hazard ratio = 1.68 [95% CI: 1.06-2.64]). CONCLUSIONS: In critically ill COVID-19 patients, a linear association between BMI and the need for IMV, independent of other metabolic risk factors, and a nonlinear association between BMI and mortality risk were observed.


Assuntos
Índice de Massa Corporal , COVID-19 , Pneumonia , COVID-19/mortalidade , Estado Terminal , Europa (Continente) , Feminino , Humanos , Israel , Masculino , Pessoa de Meia-Idade , Pneumonia/mortalidade , Estudos Retrospectivos , Estados Unidos
6.
Crit Care Med ; 49(1): e1-e10, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337748

RESUMO

OBJECTIVES: The objective of this study was to prospectively evaluate the ability of transthoracic echocardiography to assess pulmonary artery occlusion pressure in mechanically ventilated critically ill patients. DESIGN: In a prospective observational study. SETTING: Amiens University Hospital Medical ICU. PATIENTS: Fifty-three mechanically ventilated patients in sinus rhythm admitted to our ICU. INTERVENTION: Transthoracic echocardiography was performed simultaneously to pulmonary artery catheter. MEASUREMENTS AND MAIN RESULTS: Transmitral early velocity wave recorded using pulsed wave Doppler (E), late transmitral velocity wave recorded using pulsed wave Doppler (A), and deceleration time of E wave were recorded using pulsed Doppler as well as early mitral annulus velocity wave recorded using tissue Doppler imaging (E'). Pulmonary artery occlusion pressure was measured simultaneously using pulmonary artery catheter. There was a significant correlation between pulmonary artery occlusion pressure and lateral ratio between E wave and E' (E/E' ratio) (r = 0.35; p < 0.01), ratio between E wave and A wave (E/A ratio) (r = 0.41; p < 0.002), and deceleration time of E wave (r = -0.34; p < 0.02). E/E' greater than 15 was predictive of pulmonary artery occlusion pressure greater than or equal to 18 mm Hg with a sensitivity of 25% and a specificity of 95%, whereas E/E' less than 7 was predictive of pulmonary artery occlusion pressure less than 18 mm Hg with a sensitivity of 32% and a specificity of 81%. E/A greater than 1.8 yielded a sensitivity of 44% and a specificity of 95% to predict pulmonary artery occlusion pressure greater than or equal to 18 mm Hg, whereas E/A less than 0.7 was predictive of pulmonary artery occlusion pressure less than 18 mm Hg with a sensitivity of 19% and a specificity of 94%. A similar predictive capacity was observed when the analysis was confined to patients with EF less than 50%. A large proportion of E/E' measurements 32 (60%) were situated between the two cut-off values obtained by the receiver operating characteristic curves: E/E' greater than 15 and E/E' less than 7. CONCLUSIONS: In mechanically ventilated critically ill patients, Doppler transthoracic echocardiography indices are highly specific but not sensitive to estimate pulmonary artery occlusion pressure.


Assuntos
Ecocardiografia Doppler , Respiração Artificial , Estenose de Artéria Pulmonar/diagnóstico por imagem , Idoso , Pressão Sanguínea , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Respiração Artificial/efeitos adversos , Sensibilidade e Especificidade , Estenose de Artéria Pulmonar/fisiopatologia , Dispositivos de Acesso Vascular
7.
Crit Care ; 21(1): 136, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28595621

RESUMO

BACKGROUND: Cardiac output (CO) monitoring is a valuable tool for the diagnosis and management of critically ill patients. In the critical care setting, few studies have evaluated the level of agreement between CO estimated by transthoracic echocardiography (CO-TTE) and that measured by the reference method, pulmonary artery catheter (CO-PAC). The objective of the present study was to evaluate the precision and accuracy of CO-TTE relative to CO-PAC and the ability of transthoracic echocardiography to track variations in CO, in critically ill mechanically ventilated patients. METHODS: Thirty-eight mechanically ventilated patients fitted with a PAC were included in a prospective observational study performed in a 16-bed university hospital ICU. CO-PAC was measured via intermittent thermodilution. Simultaneously, a second investigator used standard-view TTE to estimate CO-TTE as the product of stroke volume and the heart rate obtained during the measurement of the subaortic velocity time integral. RESULTS: Sixty-four pairs of CO-PAC and CO-TTE measurements were compared. The two measurements were significantly correlated (r = 0.95; p < 0.0001). The median bias was 0.2 L/min, the limits of agreement (LOAs) were -1.3 and 1.8 L/min, and the percentage error was 25%. The precision was 8% for CO-PAC and 9% for CO-TTE. Twenty-six pairs of ΔCO measurements were compared. There was a significant correlation between ΔCO-PAC and ΔCO-TTE (r = 0.92; p < 0.0001). The median bias was -0.1 L/min and the LOAs were -1.3 and +1.2 L/min. With a 15% exclusion zone, the four-quadrant plot had a concordance rate of 94%. With a 0.5 L/min exclusion zone, the polar plot had a mean polar angle of 1.0° and a percentage error LOAs of -26.8 to 28.8°. The concordance rate was 100% between 30 and -30°. When using CO-TTE to detect an increase in ΔCO-PAC of more than 10%, the area under the receiving operating characteristic curve (95% CI) was 0.82 (0.62-0.94) (p < 0.001). A ΔCO-TTE of more than 8% yielded a sensitivity of 88% and specificity of 66% for detecting a ΔCO-PAC of more than 10%. CONCLUSION: In critically ill mechanically ventilated patients, CO-TTE is an accurate and precise method for estimating CO. Furthermore, CO-TTE can accurately track variations in CO.


Assuntos
Débito Cardíaco/fisiologia , Estado Terminal/terapia , Ecocardiografia/normas , Monitorização Fisiológica/normas , Idoso , Ecocardiografia/métodos , Feminino , Hospitais Universitários/organização & administração , Humanos , Unidades de Terapia Intensiva/organização & administração , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes , Respiração Artificial/métodos
8.
mBio ; 6(6): e01808-15, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26604256

RESUMO

UNLABELLED: Engineering industrial microorganisms for ambitious applications, for example, the production of second-generation biofuels such as butanol, is impeded by a lack of knowledge of primary metabolism and its regulation. A quantitative system-scale analysis was applied to the biofuel-producing bacterium Clostridium acetobutylicum, a microorganism used for the industrial production of solvent. An improved genome-scale model, iCac967, was first developed based on thorough biochemical characterizations of 15 key metabolic enzymes and on extensive literature analysis to acquire accurate fluxomic data. In parallel, quantitative transcriptomic and proteomic analyses were performed to assess the number of mRNA molecules per cell for all genes under acidogenic, solventogenic, and alcohologenic steady-state conditions as well as the number of cytosolic protein molecules per cell for approximately 700 genes under at least one of the three steady-state conditions. A complete fluxomic, transcriptomic, and proteomic analysis applied to different metabolic states allowed us to better understand the regulation of primary metabolism. Moreover, this analysis enabled the functional characterization of numerous enzymes involved in primary metabolism, including (i) the enzymes involved in the two different butanol pathways and their cofactor specificities, (ii) the primary hydrogenase and its redox partner, (iii) the major butyryl coenzyme A (butyryl-CoA) dehydrogenase, and (iv) the major glyceraldehyde-3-phosphate dehydrogenase. This study provides important information for further metabolic engineering of C. acetobutylicum to develop a commercial process for the production of n-butanol. IMPORTANCE: Currently, there is a resurgence of interest in Clostridium acetobutylicum, the biocatalyst of the historical Weizmann process, to produce n-butanol for use both as a bulk chemical and as a renewable alternative transportation fuel. To develop a commercial process for the production of n-butanol via a metabolic engineering approach, it is necessary to better characterize both the primary metabolism of C. acetobutylicum and its regulation. Here, we apply a quantitative system-scale analysis to acidogenic, solventogenic, and alcohologenic steady-state C. acetobutylicum cells and report for the first time quantitative transcriptomic, proteomic, and fluxomic data. This approach allows for a better understanding of the regulation of primary metabolism and for the functional characterization of numerous enzymes involved in primary metabolism.


Assuntos
Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Redes e Vias Metabólicas/genética , Biologia de Sistemas , Perfilação da Expressão Gênica , Análise do Fluxo Metabólico , Dados de Sequência Molecular , Proteoma/análise , Análise de Sequência de DNA
9.
Chem Commun (Camb) ; 48(27): 3360-2, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22363939

RESUMO

We report for the first time the use of iron-iron oxide core-shell nanoparticles for the hydrogenation of olefins and alkynes under mild conditions in ethanol and in an aqueous medium. This catalyst proves robust towards the presence of oxidants, such as oxygen and water, is magnetically recoverable and shows selectivity towards the less activated double bonds.


Assuntos
Alcenos/química , Alcinos/química , Nanopartículas de Magnetita/química , Catálise , Etanol/química , Compostos Férricos/química , Hidrogenação , Ferro/química , Microscopia Eletrônica de Transmissão , Oxirredução , Oxigênio/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA