Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9871, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684775

RESUMO

The Plasmodium is responsible for malaria which poses a major health threat, globally. This study is based on the estimation of the relative abundance of mosquitoes, and finding out the correlations of meteorological parameters (temperature, humidity and rainfall) with the abundance of mosquitoes. In addition, this study also focused on the use of nested PCR (species-specific nucleotide sequences of 18S rRNA genes) to explore the Plasmodium spp. in female Anopheles. In the current study, the percentage relative abundance of Culex mosquitoes was 57.65% and Anopheles 42.34% among the study areas. In addition, the highest number of mosquitoes was found in March in district Mandi Bahauddin at 21 °C (Tmax = 27, Tmin = 15) average temperature, 69% average relative humidity and 131 mm rainfall, and these climatic factors were found to affect the abundance of the mosquitoes, directly or indirectly. Molecular analysis showed that overall, 41.3% of the female Anopheles pools were positive for genus Plasmodium. Among species, the prevalence of Plasmodium (P.) vivax (78.1%) was significantly higher than P. falciparum (21.9%). This study will be helpful in the estimation of future risk of mosquito-borne diseases along with population dynamic of mosquitoes to enhance the effectiveness of vector surveillance and control programs.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Plasmodium , Reação em Cadeia da Polimerase , Animais , Anopheles/parasitologia , Anopheles/genética , Mosquitos Vetores/parasitologia , Mosquitos Vetores/genética , Reação em Cadeia da Polimerase/métodos , Feminino , Plasmodium/genética , Plasmodium/isolamento & purificação , Malária/epidemiologia , Malária/parasitologia , Malária/transmissão , RNA Ribossômico 18S/genética , Culex/parasitologia , Culex/genética , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética
2.
PLoS One ; 16(5): e0250210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33961648

RESUMO

It is already known that there are many factors responsible for the successful grafting process in plants, including light intensity. However, the influence of the spectrum of light-emitting diodes (LEDs) on this process has almost never been tested. During the pre-grafting process tomato seedlings grew for 30 days under 100 µmol m-2 s-1 of mixed LEDs (red 70%+ blue 30%). During the post-grafting period, seedlings grew for 20 days under the same light intensity but the lightening source was either red LED, mixed LEDs (red 70% + blue 30%), blue LED or white fluorescent lamps. This was done to determine which light source(s) could better improve seedling quality and increase grafting success. Our results showed that application of red and blue light mixture (R7:B3) caused significant increase in total leaf area, dry weight (total, shoot and root), total chlorophyll/carotenoid ratio, soluble protein and sugar content. Moreover, this light treatment maintained better photosynthetic performance i.e. more effective quantum yield of PSII photochemistry Y(II), better photochemical quenching (qP), and higher electron transport rate (ETR). This can be partially explained by the observed upregulation of gene expression levels of PsaA and PsbA and the parallel protein expression levels. This in turn could lead to better functioning of the photosynthetic apparatus of tomato seedlings and then to faster production of photoassimilate ready to be translocated to various tissues and organs, including those most in need, i.e., involved in the formation of the graft union.


Assuntos
Luz , Melhoramento Vegetal , Plântula/fisiologia , Plântula/efeitos da radiação , Solanum lycopersicum/fisiologia , Solanum lycopersicum/efeitos da radiação , Clorofila/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plântula/crescimento & desenvolvimento
3.
PLoS One ; 16(4): e0249373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33858008

RESUMO

It is already known that the process of photosynthesis depends on the quality and intensity of light. However, the influence of the new light sources recently used in horticulture, known as Light Emitting Diodes (LEDs), on this process is not yet fully understood. Chlorophyll a fluorescence measurement has been widely used as a rapid, reliable, and noninvasive tool to study the efficiency of the photosystem II (PSII) and to evaluate plant responses to various environmental factors, including light intensity and quality. In this work, we tested the responses of the tomato photosynthetic apparatus to different light spectral qualities. Our results showed that the best performance of the photosynthetic apparatus was observed under a mixture of red and blue light (R7:B3) or a mixture of red, green and blue light (R3:G2:B5). This was demonstrated by the increase in the effective photochemical quantum yield of PSII (Y[II]), photochemical quenching (qP) and electron transport rate (ETR). On the other hand, the mixture of red and blue light with a high proportion of blue light led to an increase in non-photochemical quenching (NPQ). Our results can be used to improve the production of tomato plants under artificial light conditions. However, since we found that the responses of the photosynthetic apparatus of tomato plants to a particular light regime were cultivar-dependent and there was a weak correlation between the growth and photosynthetic parameters tested in this work, special attention should be paid in future research.


Assuntos
Luz , Fotossíntese/efeitos da radiação , Solanum lycopersicum/efeitos da radiação , Clorofila A/análise , Umidade , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Espectrometria de Fluorescência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA