Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Chem Sci ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39246355

RESUMO

The stepwise, one-pot synthesis of heterobimetallic carbene gold(i) platinum(ii) complexes from readily available starting materials is presented. The protecting group free methodology is based on the graduated nucleophilicities of aliphatic and aromatic amines as linkers between both metal centers. This enables the selective, sequential installation of the metal fragments. In addition, the obtained complexes were tested as potential anticancer agents and directly compared to their gold(i) palladium(ii) counterparts.

2.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273286

RESUMO

The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, such as oxaliplatin and carboplatin, in the last years, different compounds were explored, employing different metal centers such as iron, ruthenium, gold, and palladium. Nonetheless, metallodrugs face several drawbacks, such as low water solubility, rapid clearance, and possible side toxicity. Encapsulation has emerged as a promising strategy to overcome these issues, providing both improved biocompatibility and protection of the payload from possible degradation in the biological environment. In this respect, liposomes, which are spherical vesicles characterized by an aqueous core surrounded by lipid bilayers, have proven to be ideal candidates due to their versatility. In fact, they can encapsulate both hydrophilic and hydrophobic drugs, are biocompatible, and their properties can be tuned to improve the selective delivery to tumour sites exploiting both passive and active targeting. In this review, we report the most recent findings on liposomal formulations of metallodrugs, with a focus on encapsulation techniques and the obtained biological results.


Assuntos
Antineoplásicos , Lipossomos , Neoplasias , Lipossomos/química , Humanos , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos
3.
J Med Chem ; 67(16): 14414-14431, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39119630

RESUMO

In this study, we synthesized novel Pd(II)-indenyl complexes using various N-heterocyclic carbene (NHC) ligands, including chelating NHC-picolyl, NHC-thioether, and diNHC ligands, and two monodentate NHCs. Transmetalation reactions between a Pd(II)-indenyl precursor and silver-NHC complexes were generally employed, except for chelating diNHC derivatives, which required direct reaction with bisimidazolium salts and potassium carbonate. Characterization included NMR, HRMS analysis, and single-crystal X-ray diffraction. In vitro on five ovarian cancer cell lines showed notable cytotoxicity, with IC50 values in the micro- and submicromolar range. Some compounds exhibited intriguing selectivity for cancer cells due to higher tumor cell uptake. Mechanistic studies revealed that monodentate NHCs induced mitochondrial damage while chelating ligands caused DNA damage. One chelating NHC-picolyl ligand showed promising cytotoxicity and selectivity in high-grade serous ovarian cancer models, supporting its consideration for preclinical study.


Assuntos
Antineoplásicos , Compostos Heterocíclicos , Metano , Neoplasias Ovarianas , Paládio , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Paládio/química , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Indenos/química , Indenos/farmacologia , Indenos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201338

RESUMO

This review highlights significant advancements in antibody-drug conjugates (ADCs) equipped with metal-based and nature-inspired payloads, focusing on synthetic strategies for antibody conjugation. Traditional methods such us maleimide and succinimide conjugation and classical condensation reactions are prevalent for metallodrugs and natural compounds. However, emerging non-conventional strategies such as photoconjugation are gaining traction due to their milder conditions and, in an aspect which minimizes side reactions, selective formation of ADC. The review also summarizes the therapeutic and diagnostic properties of these ADCs, highlighting their enhanced selectivity and reduced side effects in cancer treatment compared to non-conjugated payloads. ADCs combine the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy drugs, offering a targeted approach to the elimination of cancer cells while sparing healthy tissues. This targeted mechanism has demonstrated impressive clinical efficacy in various malignancies. Key future advancements include improved linker technology for enhanced stability and controlled release of cytotoxic agents, incorporation of novel, more potent, cytotoxic agents, and the identification of new cancer-specific antigens through genomic and proteomic technologies. ADCs are also expected to play a crucial role in combination therapies with immune checkpoint inhibitors, CAR-T cells, and small molecule inhibitors, leading to more durable and potentially curative outcomes. Ongoing research and clinical trials are expanding their capabilities, paving the way for more effective, safer, and personalized treatments, positioning ADCs as a cornerstone of modern medicine and offering new hope to patients.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico
5.
RSC Adv ; 14(36): 26568-26579, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39175687

RESUMO

Boron nitride is extensively used in various biomedical applications and often interacting with the blood circulatory system. However, the effect of its biotransformation in blood plasma, drug delivery applications, and antitumor effects remains unclear. Herein, we synthesized hydroxylated BN nanoplatelets (-OH/BNNPs) that are used to load doxorubicin (DOX) for cancer therapy. The stability of the -OH/BNNPs was tested in a lab-made, artificially developed, in vivo system for up to sixty days at two different pH values (pH 5.5 & 7.4). The results were compared thoroughly with pristine BN, and it is observed that -OH/BNNPs was very stable for up to two months compared to pristine BN that degraded during the next day. The -OH functionalization on the BNNP surface improves the DOX loading compared to the bulk BN since the -OH functional group facilitates drug absorption through hydrogen bonding. This causes the sustained release of the drug, which is an ideal requirement in drug delivery systems. The DOX-loaded -OH/BNNPs showed excellent therapeutic abilities on different cancer cell lines and organoids derived from colorectal cancer patients.

6.
Eur J Pharm Biopharm ; 203: 114397, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38972466

RESUMO

Monoacylglycerol lipase (MAGL) is a promising target for cancer therapy due to its involvement in lipid metabolism and its impact on cancer hallmarks like cell proliferation, migration, and tumor progression. A potent reversible MAGL inhibitor, MAGL23, has been recently developed by our group, demonstrating promising anticancer activities. To enhance its pharmacological properties, a nanoformulation using nanocrystals coated with albumin was prepared (MAGL23AF). In a previous work, the formulated inhibitor showed potency in ovarian and colon cancer cell lines in terms of IC50, and was tested on mice in order to assess its biocompatibility, organs biodistribution and toxicity. In the present work, we expanded the investigation to assess the potential in vivo application of MAGL23AF. Stability assays in serum and in human derived microsomes showed a good structural stability in physiological conditions of MAGL23AF. The antitumor efficacy tested on mice bearing ovarian cancer tumor xenografts demonstrated that MAGL23AF is more potent than the non-formulated drug, leading to necrosis-driven cancer cell death. In vivo studies revealed that albumin-complexed nanocrystals improved the therapeutic window of MAGL23, exhibiting a favorable biodistribution with slightly increased accumulation in the tumor. In conclusion, the MAGL23AF showed increased in vitro stability in conditions mirroring the bloodstream environment and hepatic metabolism coupled with an optimal antitumor efficacy in vivo. These results not only validates the efficacy of our formulation but also positions it as a promising strategy for addressing challenges related to the solubility of drugs in body fluids.


Assuntos
Antineoplásicos , Monoacilglicerol Lipases , Nanopartículas , Neoplasias Ovarianas , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Animais , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Camundongos , Linhagem Celular Tumoral , Monoacilglicerol Lipases/antagonistas & inibidores , Nanopartículas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Camundongos Nus , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/química , Albuminas/química , Portadores de Fármacos/química
7.
Pharmaceutics ; 16(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794326

RESUMO

BACKGROUND: The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus affecting the ubiquitin-proteasome-dependent degradation of proteins. METHODS: 2c phenotypic/molecular effects were studied in two OC 2D/3D culture models and in a mouse xenograft model. Furthermore, we propose an in silico model of 2c interaction with DUB-UCHL5. Finally, we have tested the effect of 2c conjugated to several linkers to generate 2c/derivatives usable for improved drug delivery. RESULTS: 2c effectively impairs the OC cell line and primary tumor cell viability in both 2D and 3D conditions. The effectiveness is confirmed in a xenograft mouse model of OC. We show that 2c impairs proteasome activity and triggers apoptosis, most likely by interacting with DUB-UCHL5. We also propose a mechanism for the interaction with DUB-UCHL5 via an in silico evaluation of the enzyme-inhibitor complex. 2c also reduces cell growth by down-regulating the level of the transcription factor E2F1. Eventually, 2c activity is often retained after the conjugation with linkers. CONCLUSION: Our data strongly support the potential therapeutic value of 2c/derivatives in OC.

8.
Dalton Trans ; 53(18): 7939-7945, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38646683

RESUMO

A series of novel dinuclear NHC-gold-thiolato and -alkynyl complexes bearing aromatic linkers were successfully synthesized by an efficient and simple synthetic route. The catalytic activity of these complexes was tested in a lactonization reaction. The reaction proceeds in high efficiency, in short reaction time and under mild conditions, and is complementary to existing methods. Furthermore, the digold(I)-thiolato derivatives exhibit remarkable cytotoxicity towards several cancer cell lines.

9.
Dalton Trans ; 53(19): 8463-8477, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38686752

RESUMO

In continuation of our previous works on the cytotoxic properties of organopalladium compounds, in this contribution we describe the first systematic study of the anticancer activity of Pd(II)-aryl complexes. To this end, we have prepared and thoroughly characterized a wide range of palladium derivatives bearing different diphosphine, aryl and halide ligands, developing, when necessary, specific synthetic protocols. Most of the synthesized compounds showed remarkable cytotoxicity towards ovarian and breast cancer cell lines, with IC50 values often comparable to or lower than that of cisplatin. The most promising complexes ([PdI(Ph)(dppe)] and [PdI(p-CH3-Ph)(dppe)]), characterized by a diphosphine ligand with a low bite angle, exhibited, in addition to excellent cytotoxicity towards cancer cells, low activity on normal cells (MRC5 human lung fibroblasts). Specific immunofluorescence tests (cytochrome c and H2AX assays), performed to clarify the possible mechanism of action of this class of organopalladium derivatives, seemed to indicate DNA as the primary cellular target, whereas caspase 3/7 assays proved that the complex [PdI(Ph)(dppe)] was able to promote intrinsic apoptotic cell death. A detailed molecular docking analysis confirmed the importance of a diphosphine ligand with a reduced bite angle to ensure a strong DNA-complex interaction. Finally, one of the most promising complexes was tested towards patient-derived organoids, showing promising ex vivo cytotoxicity.


Assuntos
Antineoplásicos , Complexos de Coordenação , Simulação de Acoplamento Molecular , Paládio , Fosfinas , Humanos , Paládio/química , Paládio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Fosfinas/química , Fosfinas/farmacologia , Ligantes , Relação Estrutura-Atividade , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular
10.
Mar Pollut Bull ; 202: 116231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554685

RESUMO

Microplastic (MP) pollution poses a global concern, especially for benthic invertebrates. This one-month study investigated the accumulation of small MP polymers (polypropylene and polyester resin, 3-500 µm, 250 µg L-1) in benthic invertebrates and on one alga species. Results revealed species-specific preferences for MP size and type, driven by ingestion, adhesion, or avoidance behaviours. Polyester resin accumulated in Mytilus galloprovincialis, Chamelea gallina, Hexaplex trunculus, and Paranemonia cinerea, while polypropylene accumulated on Ulva rigida. Over time, MP accumulation decreased in count but not size, averaging 6.2 ± 5.0 particles per individual after a month. MP were mainly found inside of the organisms, especially in the gut, gills, and gonads and externally adherent MP ranged from 11 to 35 % of the total. Biochemical energy assessments after two weeks of MP exposure indicated energy gains for water column species but energy loss for sediment-associated species, highlighting the susceptibility of infaunal benthic communities to MP contamination.


Assuntos
Monitoramento Ambiental , Invertebrados , Microplásticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Organismos Aquáticos , Ecossistema
11.
J Mater Chem B ; 12(16): 3807-3839, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38529820

RESUMO

This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.


Assuntos
Administração Cutânea , Antineoplásicos , Ciclodextrinas , Estruturas Metalorgânicas , Neoplasias Cutâneas , Estruturas Metalorgânicas/química , Humanos , Ciclodextrinas/química , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Animais , Portadores de Fármacos/química
12.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474631

RESUMO

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Metano/análogos & derivados , Neoplasias Ovarianas , Fosfinas , Feminino , Humanos , Cisplatino/química , Platina/química , Linhagem Celular Tumoral , Cianetos , Espectroscopia de Infravermelho com Transformada de Fourier , Complexos de Coordenação/química , Antineoplásicos/química , Ligantes
13.
Sci Rep ; 14(1): 6280, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491077

RESUMO

Amiodarone repositioning in cancer treatment is promising, however toxicity limits seem to arise, constraining its exploitability. Notably, amiodarone has been investigated for the treatment of ovarian cancer, a tumour known for metastasizing within the peritoneal cavity. This is associated with an increase of fatty acid oxidation, which strongly depends on CPT1A, a transport protein which has been found overexpressed in ovarian cancer. Amiodarone is an inhibitor of CPT1A but its role still has to be explored. Therefore, in the present study, amiodarone was tested on ovarian cancer cell lines with a focus on lipid alteration, confirming its activity. Moreover, considering that drug delivery systems could lower drug side effects, microfluidics was employed for the development of drug delivery systems of amiodarone obtaining simultaneously liposomes with a high payload and amiodarone particles. Prior to amiodarone loading, microfluidics production was optimized in term of temperature and flow rate ratio. Moreover, stability over time of particles was evaluated. In vitro tests confirmed the efficacy of the drug delivery systems.


Assuntos
Amiodarona , Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Amiodarona/farmacologia , Amiodarona/uso terapêutico , Reposicionamento de Medicamentos , Microfluídica , Lipossomos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
14.
Adv Healthc Mater ; 13(15): e2304206, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38334216

RESUMO

Primary human omental adipocytes and ovarian cancer(OC) cells establish a bidirectional communication in which tumor driven lipolysis is induced in adipocytes and the resulting fatty acids are delivered to cancer cells within the tumor microenvironment. Despite meaningful improvement in the treatment of OC, its efficacy is still limited by hydrophobicity and untargeted effects related to chemotherapeutics. Herein, omental adipocytes are firstly used as a reservoir for paclitaxel, named Living Paclitaxel Bullets (LPB) and secondly benefit from the established dialogue between adipocytes and cancer cells to engineer a drug delivery process that target specifically cancer cells. These results show that mature omental adipocytes can successfully uptake paclitaxel and deliver it to OC cells in a transwell coculture based in vitro model. In addition, the efficacy of this proof-of-concept has been demonstrated in vivo and induces a significant inhibition of tumor growth on a xenograft tumor model. The use of mature adipocytes can be suitable for clinical prospection in a cell-based therapy system, due to their mature and differentiated state, to avoid risks related to uncontrolled cell de novo proliferation capacity after the delivery of the antineoplastic drug as observed with other cell types when employed as drug carriers.


Assuntos
Adipócitos , Omento , Neoplasias Ovarianas , Paclitaxel , Paclitaxel/farmacologia , Paclitaxel/química , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/citologia , Animais , Linhagem Celular Tumoral , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Camundongos Nus , Técnicas de Cocultura , Sistemas de Liberação de Medicamentos/métodos , Microambiente Tumoral/efeitos dos fármacos
15.
Nanoscale ; 16(10): 5206-5214, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38375540

RESUMO

The immune checkpoint programmed death ligand 1 (PD-L1) protein is expressed by tumor cells and it suppresses the killer activity of CD8+ T-lymphocyte cells binding to the programmed death 1 (PD-1) protein of these immune cells. Binding to either PD-L1 or PD1 is used for avoiding the inactivation of CD8+ T-lymphocyte cells. We report, for the first time, Au plasmonic nanostructures with surface-enhanced Raman scattering (SERS) properties (SERS nanostructures) and functionalized with an engineered peptide (CLP002: Trp-His-Arg-Ser-Tyr-Tyr-Thr-Trp-Asn-Leu-Asn-Thr), which targets PD-L1. Molecular dynamics calculations are used to describe the interaction of the targeting peptide with PD-L1 in the region where the interaction with PD-1 occurs, showing also the poor targeting activity of a peptide with the same amino acids, but a scrambled sequence. The results are confirmed experimentally since a very good targeting activity is observed against the MDA-MB-231 breast adenocarcinoma cancer cell line, which overexpresses PD-L1. A good activity is observed, in particular, for SERS nanostructures where the CLP002-engineered peptide is linked to the nanostructure surface with a short charged amino acid sequence and a long PEG chain. The results show that the functionalized SERS nanostructures show very good targeting of the immune checkpoint PD-L1.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Proteínas de Checkpoint Imunológico , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Peptídeos/química
16.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257258

RESUMO

A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Fosfinas , Humanos , Feminino , Cisplatino , Linhagem Celular Tumoral , Ligantes , Paládio , Espectroscopia de Infravermelho com Transformada de Fourier , Cianetos
17.
Biomed Pharmacother ; 171: 116017, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194739

RESUMO

The clinical application of nanomaterials for chemodynamic therapy (CDT), which generate multiple reactive oxygen species (ROS), presents significant challenges. These challenges arise due to insufficient levels of endogenous hydrogen peroxide and catalytic ions necessary to initiate Fenton reactions. As a result, sophisticated additional delivery systems are required. In this study, a novel bimetallic copper (II) pentacyanonitrosylferrate (Cu(II)NP, Cu[Fe(CN) 5 NO]) material was developed to address these limitations. This material functions as a multiple ROS generator at tumoral sites by self-inducing hydrogen peroxide and producing peroxynitrite (ONOO-) species. The research findings demonstrate that this material exhibits low toxicity towards normal liver organoids, yet shows potent antitumoral effects on High Grade Serous Ovarian Cancer (HGSOC) organoid patients, regardless of platinum resistance. Significantly, this research introduces a promising therapeutic opportunity by proposing a single system capable of replacing the need for H2O2, additional catalysts, and NO-based delivery systems. This innovative system exhibits remarkable multiple therapeutic mechanisms, paving the way for potential advancements in clinical treatments.


Assuntos
Cobre , Neoplasias , Humanos , Peróxido de Hidrogênio , Nitroprussiato , Espécies Reativas de Oxigênio
19.
J Adv Res ; 56: 43-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36958586

RESUMO

INTRODUCTION: Chemodynamic therapy (CDT) holds great promise in achieving cancer therapy through Fenton and Fenton-like reactions, which generate highly toxic reactive species. However, CDT is limited by the lower amount of catalyst ions that can decompose already existing intracellular H2O2 and produce reactive oxygen species (ROS) to attain a therapeutic outcome. OBJECTIVES: To overcome these limitations, a tailored approach, which utilizes dual metals cations (Ag+, Fe2+) based silver pentacyanonitrosylferrate or silver nitroprusside (AgNP) were developed for Fenton like reactions that can specifically kill cancer cells by taking advantage of tumor acidic environment without used of any external stimuli. METHODS: A simple solution mixing procedure was used to synthesize AgNP as CDT agent. AgNP were structurally and morphologically characterized, and it was observed that a minimal dose of AgNP is required to destroy cancer cells with limited effects on normal cells. Moreover, comprehensive in vitro studies were conducted to evaluate antitumoral mechanism. RESULTS: AgNP have an effective ability to decompose endogenous H2O2 in cells. The decomposed endogenous H2O2 generates several different types of reactive species (•OH, O2•-) including peroxynitrite (ONOO-) species as apoptotic inducers that kill cancer cells, specifically. Cellular internalization data demonstrated that in short time, AgNP enters in lysosomes, avoid degradation and due to the acidic pH of lysosomes significantly generate high ROS levels. These data are further confirmed by the activation of different oxidative genes. Additionally, we demonstrated the biocompatibility of AgNP on mouse liver and ovarian organoids as an ex vivo model while AgNP showed the therapeutic efficacy on patient derived tumor organoids (PDTO). CONCLUSION: This work demonstrates the therapeutic application of silver nitroprusside as a multiple ROS generator utilizing Fenton like reaction. Thereby, our study exhibits a potential application of CDT against HGSOC (High Grade Serous Ovarian Cancer), a deadly cancer through altering the redox homeostasis.


Assuntos
Neoplasias , Prata , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Prata/farmacologia , Prata/uso terapêutico , Nitroprussiato/farmacologia , Nitroprussiato/uso terapêutico , Ácido Peroxinitroso/uso terapêutico , Peróxido de Hidrogênio/química , Neoplasias/tratamento farmacológico
20.
Clin Exp Rheumatol ; 41(12): 2493-2501, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149513

RESUMO

OBJECTIVES: The aim of the study was to culture vital salivary gland organoids obtained through labial or parotid biopsy of primary Sjögren's syndrome (pSS) patients in order to evaluate their morphological and functional features in basal condition and after stimulation with Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) activator forskolin and phosphodiesterase 4 (PDE4) inhibitor apremilast, their in vitro regenerative capacity and the immune-histological resemblance with original tissue. METHODS: Salivary gland tissues from five pSS patients were processed to obtain vital organoids; swelling assay and cell proliferation tests were performed after forskolin and apremilast application. Immunochemistry evaluation on original salivary gland tissue and corresponding organoids was performed, and secretomics analysis was conducted to assess their functional status. REULTS: After application of forskolin and apremilast, we observed organoid swelling after 30 minutes, compatible with a positive functional status and enhancement of saliva production. In 3 cases, apremilast induced organoid proliferation. All cases were positive for cytokeratin 14 (CK14) and most for cytokeratin 5 (CK5). All the cases were positive for amylase; its secretion, and thus functional status of organoids, was confirmed by its high concentration in the culture medium. A focal ductal differentiation was found in some cases, highlighted by epithelial membrane antigen (EMA) positivity. The more differentiated EMA positive areas were negative for the staminal marker CK14, showing a sort of "complementary staining". CONCLUSIONS: Our data highlighted that differentiated cells and vital functional organoids that recapitulate the development of original salivary glands can be obtained from pSS epithelium. For the first time, the direct stimulating effect of PDE4 inhibitor apremilast on pSS human salivary gland organoids is reported, opening new perspectives on targeting oral dryness with drugs that combine secretagogue and immunomodulatory effects.


Assuntos
Inibidores da Fosfodiesterase 4 , Síndrome de Sjogren , Humanos , Inibidores da Fosfodiesterase 4/farmacologia , Secretagogos , Colforsina , Glândulas Salivares , Organoides/metabolismo , Organoides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA