Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e23215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149209

RESUMO

Neuropeptides are a group of peptides derived from precursor proteins synthesized in neuronal and nonneuronal cells. The classical functions of neuropeptides have been extensively studied in mammals, including neuromodulation in the central nervous system, molecular signaling in the peripheral nervous system, and immunomodulation associated mainly with anti-inflammatory activity. In contrast, in teleosts, studies of the immunomodulatory function of these neuropeptides are limited. In Oncorhynchus mykiss, vasoactive intestinal peptide (VIP) mRNA sequences have not been cloned, and the role of VIP in modulating the immune system has not been studied. Furthermore, in relation to other neuropeptides with possible immunomodulatory function, such as ghrelin, there are also few studies. Therefore, in this work, we performed molecular cloning, identification, and phylogenetic analysis of three VIP precursor sequences (prepro-VIP1, VIP2 and VIP3) in rainbow trout. In addition, the immunomodulatory function of both neuropeptides was evaluated in an in vitro model using the VIP1 sequence identified in this work and a ghrelin sequence already studied in O. mykiss. The results suggest that the prepro-VIP2 sequence has the lowest percentage of identity with respect to the other homologous sequences and is more closely related to mammalian orthologous sequences. VIP1 induces significant expression of both pro-inflammatory (IFN-γ, IL-1ß) and anti-inflammatory (IL-10 and TGF-ß) cytokines, whereas ghrelin only induces significant expression of proinflammatory cytokines such as IL-6 and TNF-α.

2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834146

RESUMO

The aquaculture industry is constantly increasing its fish production to provide enough products to maintain fish consumption worldwide. However, the increased production generates susceptibility to infectious diseases that cause losses of millions of dollars to the industry. Conventional treatments are based on antibiotics and antivirals to reduce the incidence of pathogens, but they have disadvantages, such as antibiotic resistance generation, antibiotic residues in fish, and environmental damage. Instead, functional foods with active compounds, especially antimicrobial peptides that allow the generation of prophylaxis against infections, provide an interesting alternative, but protection against gastric degradation is challenging. In this study, we evaluated a new immunomodulatory recombinant peptide, CATH-FLA, which is encapsulated in chitosan microparticles to avoid gastric degradation. The microparticles were prepared using a spray drying method. The peptide release from the microparticles was evaluated at gastric and intestinal pH, both in vitro and in vivo. Finally, the biological activity of the formulation was evaluated by measuring the expression of il-1ß, il-8, ifn-γ, Ifn-α, and mx1 in the head kidney and intestinal tissues of rainbow trout (Oncorhynchus mykiss). The results showed that the chitosan microparticles protect the CATH-FLA recombinant peptide from gastric degradation, allowing its release in the intestinal portion of rainbow trout. The microparticle-protected CATH-FLA recombinant peptide increased the expression of il-1ß, il-8, ifn-γ, ifn-α, and mx1 in the head kidney and intestine and improved the antiprotease activity in rainbow trout. These results suggest that the chitosan microparticle/CATH-FLA recombinant peptide could be a potential prophylactic alternative to conventional antibiotics for the treatment of infectious diseases in aquaculture.


Assuntos
Quitosana , Doenças Transmissíveis , Doenças dos Peixes , Oncorhynchus mykiss , Animais , Quitosana/farmacologia , Interleucina-8 , Imunidade Inata , Peptídeos/farmacologia , Intestinos , Antibacterianos , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle
3.
Fish Shellfish Immunol ; 125: 120-127, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35537671

RESUMO

The intensive salmon farming is associated with massive outbreaks of infections. The use of antibiotics for their prevention and control is related to damage to the environment and human health. Antimicrobial peptides (AMPs) have been proposed as an alternative to the use of antibiotics for their antimicrobial and immunomodulatory activities. However, one of the main challenges for its massive clinical application is the high production cost and the complexity of chemical synthesis. Thus, recombinant DNA technology offers a more sustainable, scalable, and profitable option. In the present study, using an AMPs function prediction methodology, we designed a chimeric peptide consisting of sequences derived from cathelicidin fused with the immunomodulatory peptide derived from flagellin. The designed peptide, CATH-FLA was produced by recombinant expression using an easy pre-purification system. The chimeric peptide was able to induce IL-1ß and IL-8 expression in Salmo salar head kidney leukocytes, and prevented Piscirickettsia salmonis-induced cytotoxicity in SHK-1 cells. These results suggest that pre-purification of a recombinant AMP-based chimeric peptide designed in silico allow obtaining a peptide with immunomodulatory activity in vitro. This could solve the main obstacle of AMPs for massive clinical applications.


Assuntos
Doenças dos Peixes , Piscirickettsia , Infecções por Piscirickettsiaceae , Salmo salar , Animais , Antibacterianos , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Flagelina , Rim Cefálico , Piscirickettsia/genética , Infecções por Piscirickettsiaceae/veterinária , Salmão
4.
Antioxid Redox Signal ; 35(1): 61-74, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607936

RESUMO

Significance: Vitamin C is a powerful antioxidant that has an intricate relationship with cancer and has been studied for more than 60 years. However, the specific mechanisms that allow malignant cells to uptake, metabolize, and compartmentalize vitamin C remain unclear. In normal human cells, two different transporter systems are responsible for its acquisition: glucose transporters (GLUTs) transport the oxidized form of vitamin C (dehydroascorbic acid) and sodium-coupled ascorbic acid transporters (SVCTs) transport the reduced form (ascorbic acid [AA]). In this study, we review the mechanisms described for vitamin C uptake and metabolization in cancer. Recent Advances: Several studies performed recently in vivo and in vitro have provided the scientific community a better understanding of the differential capacities of cancer cells to acquire vitamin C: tumors from different origins do not express SVCTs in the plasma membrane and are only able to acquire vitamin C in its oxidized form. Interestingly, cancer cells differentially express a mitochondrial form of SVCT2. Critical Issues: Why tumors have reduced AA uptake capacity at the plasma membrane, but develop the capacity of AA transport within mitochondria, remains a mystery. However, it shows that understanding vitamin C physiology in tumor survival might be key to decipher the controversies in its relationship with cancer. Future Directions: A comprehensive analysis of the mechanisms by which cancer cells acquire, compartmentalize, and use vitamin C will allow the design of new therapeutic approaches in human cancer. Antioxid. Redox Signal. 35, 61-74.


Assuntos
Ácido Ascórbico/metabolismo , Ácido Desidroascórbico/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Neoplasias/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Antioxidantes/metabolismo , Humanos , Mitocôndrias/metabolismo
5.
Front Pharmacol ; 11: 211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194425

RESUMO

Since the early studies of William J. McCormick in the 1950s, vitamin C has been proposed as a candidate for the treatment of cancer. A number of reports have shown that pharmacological concentrations of vitamin C selectively kill cancer cells in vitro and decrease the growth rates of a number of human tumor xenografts in immunodeficient mice. However, up to the date there is still doubt regarding this possible therapeutic role of vitamin C in cancer, mainly because high dose administration in cancer patients has not showed a clear antitumor activity. These apparent controversial findings highlight the fact that we lack information on the interactions that occurs between cancer cells and vitamin C, and if these transformed cells can uptake, metabolize and compartmentalize vitamin C like normal human cells do. The role of SVCTs and GLUTs transporters, which uptake the reduced form and the oxidized form of vitamin C, respectively, has been recently highlighted in the context of cancer showing that the relationship between vitamin C and cancer might be more complex than previously thought. In this review, we analyze the state of art of the effect of vitamin C on cancer cells in vitro and in vivo, and relate it to the capacity of cancer cells in acquiring, metabolize and compartmentalize this nutrient, with its implications on the potential therapeutic role of vitamin C in cancer.

6.
Biomolecules ; 10(3)2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121436

RESUMO

Maytenus disticha (Hook F.), belonging to the Celastraceae family, is an evergreen shrub, native of the central southern mountains of Chile. Previous studies demonstrated that the total extract of M. disticha (MD) has an acetylcholinesterase inhibitory activity along with growth regulatory and insecticidal activities. ß-Dihydroagarofurans sesquiterpenes are the most active components in the plant. However, its activity in cancer has not been analyzed yet. Here, we demonstrate that MD has a cytotoxic activity on breast (MCF-7), lung (PC9), and prostate (C4-2B) human cancer cells with an IC50 (µg/mL) of 40, 4.7, and 5 µg/mL, respectively, an increasing Bax/Bcl2 ratio, and inducing a mitochondrial membrane depolarization. The ß-dihydroagarofuran-type sesquiterpene (MD-6), dihydromyricetin (MD-9), and dihydromyricetin-3-O-ß-glucoside (MD-10) were isolated as the major compounds from MD extracts. From these compounds, only MD-6 showed cytotoxic activity on MCF-7, PC9, and C4-2B with an IC50 of 31.02, 17.58, and 42.19 µM, respectively. Furthermore, the MD-6 increases cell ROS generation, and MD and MD-6 induce a mitochondrial superoxide generation and apoptosis on MCF-7, PC9, and C4-2B, which suggests that the cytotoxic effect of MD is mediated in part by the ß-dihydroagarofuran-type that induces apoptosis by a mitochondrial dysfunction.


Assuntos
Apoptose/efeitos dos fármacos , Maytenus/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias , Neoplasias , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Sesquiterpenos/química
7.
Data Brief ; 25: 103972, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31249848

RESUMO

The data presented in this article are related to the research paper entitled "Increased expression of mitochondrial sodium-coupled ascorbic acid transporter-2 (mitSVCT2) as a central feature in breast cancer", available in Free Radical Biology and Medicine Journal [1]. In this article, we examined the SVCT2 transporter expression in various breast cancer cell lines using RT-PCR and Western blot assays. In addition, we analyzed the subcellular localization of SVCT2 by immunofluorescence colocalization assays and cellular fractionation experiments. Finally, an analysis of different cancer tissue microarrays immunostained for SVCT2 and imaged by The Human Protein Atlas (https://www.proteinatlas.org) is presented.

8.
Free Radic Biol Med ; 135: 283-292, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902760

RESUMO

The potential role of vitamin C in cancer prevention and treatment remains controversial. While normal human cells obtain vitamin C as ascorbic acid, the prevalent form of vitamin C in vivo, the uptake mechanisms by which cancer cells acquire vitamin C has remained unclear. The aim of this study is to characterize how breast cancer cells acquire vitamin C. For this, we determined the expression of vitamin C transporters in normal and breast cancer tissue samples, and in ZR-75, MCF-7, MDA-231 and MDA-468 breast cancer cell lines. At the same time, reduced (AA) and oxidized (DHA) forms of vitamin C uptake experiments were performed in all cell lines. We show here that human breast cancer tissues differentially express a form of SVCT2 transporter, that is systematically absent in normal breast tissues and it is increased in breast tumors. In fact, estrogen receptor negative breast cancer tissue, exhibit the most elevated SVCT2 expression levels. Despite this, our analysis in breast cancer cell lines showed that these cells are not able to uptake ascorbic acid and depend on glucose transporter for the acquisition of vitamin C by a bystander effect. This is consistent with our observations that this form of SVCT2 is completely absent from the plasma membrane and is overexpressed in mitochondria of breast cancer cells, where it mediates ascorbic acid transport. This work shows that breast cancer cells acquire vitamin C in its oxidized form and are capable of accumulated high concentrations of the reduced form. Augmented expression of an SVCT2 mitochondrial form appears to be a common hallmark across all human cancers and might have implications in cancer cells survival capacity against pro-oxidant environments.


Assuntos
Neoplasias da Mama/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Transportadores de Sódio Acoplados à Vitamina C/genética , Ácido Ascórbico/metabolismo , Neoplasias da Mama/patologia , Efeito Espectador , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Mitocôndrias/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo
9.
Free Radic Biol Med ; 108: 655-667, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28419867

RESUMO

The liver has an extraordinary regenerative capacity in response to partial hepatectomy (PHx), which develops with neither tissue inflammation response nor alterations in the whole organism. This process is highly coordinated and it has been associated with changes in glutathione (GSH) metabolism. However, there are no reports indicating ascorbic acid (AA) levels after partial hepatectomy. AA and GSH act integrally as an antioxidant system that protects cells and tissues from oxidative damage and imbalance observed in a variety of diseases that affect the liver. Although rat hepatocytes are able to synthesize AA and GSH, which are the providers of AA for the whole organism, they also acquire AA from extracellular sources through the sodium-coupled ascorbic acid transporter-1 (SVCT1). Here, we show that hepatocytes from rat livers subjected to PHx increase their GSH and AA levels from 1 to 7 days post hepatectomy, whose peaks precede the peak in cell proliferation observed at 3 days post-hepatectomy. The increase in both antioxidants was associated with higher expression of the enzymes involved in their synthesis, such as the modifier subunit of enzyme glutamine cysteine ligase (GCLM), glutathione synthetase (GS), gulonolactonase (GLN) and gulonolactone oxidase (GULO). Importantly, rat hepatocytes, that normally exhibit kinetic evidence indicating only SVCT1-mediated transport of AA, lost more than 90% of their capacity to transport it at day 1 after PHx without evidence of recovery at day 7. This observation was in agreement with loss of SVCT1 protein expression, which was undetectable in hepatocytes as early as 2h after PHx, with partial recovery at day 7, when the regenerated liver weight returns to normal. We conclude that after PHx, rat hepatocytes enhance their antioxidant capacity by increasing GSH and AA levels prior to the proliferative peak. GSH and AA are increased by de novo synthesis, however paradoxically hepatocytes from rat subjected to PHx also suppress their capacity to acquire AA from extracellular sources through SVCT1.


Assuntos
Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Hepatócitos/fisiologia , Fígado/fisiologia , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Animais , Antioxidantes/metabolismo , Proliferação de Células , Regulação da Expressão Gênica , Hepatectomia , Fígado/cirurgia , Regeneração Hepática , Oxirredução , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Transportadores de Sódio Acoplados à Vitamina C/genética
10.
Free Radic Biol Med ; 70: 241-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24594434

RESUMO

Despite the fundamental importance of the redox metabolism of mitochondria under normal and pathological conditions, our knowledge regarding the transport of vitamin C across mitochondrial membranes remains far from complete. We report here that human HEK-293 cells express a mitochondrial low-affinity ascorbic acid transporter that molecularly corresponds to SVCT2, a member of the sodium-coupled ascorbic acid transporter family 2. The transporter SVCT1 is absent from HEK-293 cells. Confocal colocalization experiments with anti-SVCT2 and anti-organelle protein markers revealed that most of the SVCT2 immunoreactivity was associated with mitochondria, with minor colocalization at the endoplasmic reticulum and very low immunoreactivity at the plasma membrane. Immunoblotting of proteins extracted from highly purified mitochondrial fractions confirmed that SVCT2 protein was associated with mitochondria, and transport analysis revealed a sigmoidal ascorbic acid concentration curve with an apparent ascorbic acid transport Km of 0.6mM. Use of SVCT2 siRNA for silencing SVCT2 expression produced a major decrease in mitochondrial SVCT2 immunoreactivity, and immunoblotting revealed decreased SVCT2 protein expression by approximately 75%. Most importantly, the decreased protein expression was accompanied by a concomitant decrease in the mitochondrial ascorbic acid transport rate. Further studies using HEK-293 cells overexpressing SVCT2 at the plasma membrane revealed that the altered kinetic properties of mitochondrial SVCT2 are due to the ionic intracellular microenvironment (low in sodium and high in potassium), with potassium acting as a concentration-dependent inhibitor of SVCT2. We discarded the participation of two glucose transporters previously described as mitochondrial dehydroascorbic acid transporters; GLUT1 is absent from mitochondria and GLUT10 is not expressed in HEK-293 cells. Overall, our data indicate that intracellular SVCT2 is localized in mitochondria, is sensitive to an intracellular microenvironment low in sodium and high in potassium, and functions as a low-affinity ascorbic acid transporter. We propose that the mitochondrial localization of SVCT2 is a property shared across cells, tissues, and species.


Assuntos
Ácido Ascórbico/metabolismo , Transporte Biológico/genética , Mitocôndrias/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Radicais Livres/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Oxirredução , RNA Interferente Pequeno , Transportadores de Sódio Acoplados à Vitamina C/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA