Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832826

RESUMO

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Assuntos
Citocinese , Drosophila melanogaster , Ecdisona , Células Germinativas , Testículo , Animais , Masculino , Ecdisona/metabolismo , Testículo/metabolismo , Feminino , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Células Germinativas/citologia , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular , Transdução de Sinais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
2.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37905121

RESUMO

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.

3.
Mol Cell Neurosci ; 109: 103570, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33160016

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder hallmarked by amyloid-ß (Aß) plaque accumulation, neuronal cell death, and cognitive deficits that worsen during disease progression. Histone acetylation dysregulation, caused by an imbalance between reduced histone acetyltransferases (HAT) Tip60 and increased histone deacetylase 2 (HDAC2) levels, can directly contribute to AD pathology. However, whether such AD-associated neuroepigenetic alterations occur in response to Aß peptide production and can be protected against by increasing Tip60 levels over the course of neurodegenerative progression remains unknown. Here we profile Tip60 HAT/HDAC2 dynamics and transcriptome-wide changes across early and late stage AD pathology in the Drosophila brain produced solely by human amyloid-ß42. We show that early Aß42 induction leads to disruption of Tip60 HAT/HDAC2 balance during early neurodegenerative stages preceding Aß plaque accumulation that persists into late AD stages. Correlative transcriptome-wide studies reveal alterations in biological processes we classified as transient (early-stage only), late-onset (late-stage only), and constant (both). Increasing Tip60 HAT levels in the Aß42 fly brain protects against AD functional pathologies that include Aß plaque accumulation, neural cell death, cognitive deficits, and shorter life-span. Strikingly, Tip60 protects against Aß42-induced transcriptomic alterations via distinct mechanisms during early and late stages of neurodegeneration. Our findings reveal distinct modes of neuroepigenetic gene changes and Tip60 neuroprotection in early versus late stages in AD that can serve as early biomarkers for AD, and support the therapeutic potential of Tip60 over the course of AD progression.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Histona Acetiltransferases/fisiologia , Degeneração Neural/genética , Fragmentos de Peptídeos/toxicidade , Transcriptoma , Acetilação , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apoptose , Aprendizagem por Associação/fisiologia , Modelos Animais de Doenças , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Código das Histonas , Histona Desacetilase 2/fisiologia , Larva , Locomoção , Longevidade , Aprendizagem em Labirinto , Odorantes , Processamento de Proteína Pós-Traducional , Olfato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA