Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(5): e14427, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698677

RESUMO

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Assuntos
Artrópodes , Biodiversidade , Aves , Clima , Comportamento Predatório , Árvores , Animais , Artrópodes/fisiologia , Aves/fisiologia , Cadeia Alimentar , Larva/fisiologia
2.
Sci Total Environ ; 857(Pt 3): 159717, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302436

RESUMO

Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.


Assuntos
Ecossistema , Árvores , Árvores/química , Folhas de Planta , Florestas , Chá , Biodiversidade , Solo/química
3.
Foods ; 11(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35627047

RESUMO

Virgin olive oil (VOO) classification into quality categories determines its labeling and market price. This procedure involves performing a series of chemical-physical analyses and, ultimately, a sensory analysis through the panel test. This work explores the analysis of VOOs quality with an electronic olfactory system (EOS) and examines its abilities using the panel test as a reference. To do this, six commercial olive oils labelled as extra virgin were analyzed with an EOS and classified by three panels recognized by the International Olive Council. The organoleptic analysis of the oils by the panels indicated that most of the oils in the study were in fact not extra virgin. Besides this, the classifications showed inconsistencies between panels, needing statistical treatment to be used as a reference for the EOS training. The analysis of the same oils by the EOS and their subsequent statistical analysis by PCA revealed a good correlation between the first principal component and the olive oil quality from the panels using average scores. It also showed a more consistent classification than the panels. Overall, the EOS proved to be a cheaper, faster, and highly reliable method as a complement to the panel test for the olive oil classification.

4.
J Fungi (Basel) ; 8(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35448564

RESUMO

Climate change and atmospheric nitrogen (N) deposition on drylands are greatly threatening these especially vulnerable areas. Soil biocrust-forming lichens in drylands can provide early indicators of these disturbances and play a pivotal role, as they contribute to key ecosystem services. In this study, we explored the effects of different long-term water availability regimes simulating climate changes and their interaction with N addition on the physiological response of the soil lichen Cladonia rangiferina. Three sets of this lichen were subjected to control, reduced watering, and reduced watering and N addition (40 kg NH4NO3 ha-1 year-1) treatments for 16 months. Finally, all samples were subjected to daily hydration cycles with N-enriched water at two levels (40 and 80 kg NH4NO3 ha-1 year-1) for 23 days. We found that reduced watering significantly decreased the vitality of this lichen, whereas N addition unexpectedly helped lichens subjected to reduced watering to cope with stress produced by high temperatures. We also found that long-term exposure to N addition contributed to the acclimation to higher N availability. Overall, our data suggest that the interactions between reduced watering and increased N supply and temperature have an important potential to reduce the physiological performance of this soil lichen.

5.
J Fungi (Basel) ; 7(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926031

RESUMO

Lichens are classified into different functional groups depending on their ecological and physiological response to a given environmental stressor. However, knowledge on lichen response to the synergistic effect of multiple environmental factors is extremely scarce, although vital to get a comprehensive understanding of the effects of global change. We exposed six lichen species belonging to different functional groups to the combined effects of two nitrogen (N) doses and direct sunlight involving both high temperatures and ultraviolet (UV) radiation for 58 days. Irrespective of their functional group, all species showed a homogenous response to N with cumulative, detrimental effects and an inability to recover following sunlight, UV exposure. Moreover, solar radiation made a tolerant species more prone to N pollution's effects. Our results draw attention to the combined effects of global change and other environmental drivers on canopy defoliation and tree death, with consequences for the protection of ecosystems.

6.
ACS Sens ; 3(9): 1627-1631, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30160467

RESUMO

We present here a cheap, fast, and highly selective dosimeter for the colorimetric detection of gaseous phosgene with an ultralow detection limit. The disposable device is based on Harrison's reagent supported into a porous nanocrystalline TiO2 matrix film. We exposed the films to phosgene streams while the absorbance was monitored by an optic fiber in a gas chamber. The pronounced spectral changes were unaffected by humidity and oxygen and permitted us to use the response rate at 464 nm as a very stable calibration signal for quantitative analysis purposes. The use of a specific sensing reaction guaranteed a very high selectivity of the device even against saturated vapors of primary interferences like halide gases and other oxidizing and volatile agents. With this simple method, whose response is compatible with affordable and efficient miniature LED-photodiode devices, we reach an ultralow limit of detection well below the ppm level.


Assuntos
Fosgênio/análise , Benzaldeídos/química , Calibragem , Colorimetria/métodos , Difenilamina/química , Gases/análise , Gases/química , Limite de Detecção , Nanopartículas/química , Fosgênio/química , Porosidade , Titânio/química
7.
Materials (Basel) ; 10(9)2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841183

RESUMO

A novel technique for the creation of metal-organic framework (MOF) films based on soft-imprinting and their use as gas sensors was developed. The microporous MOF material [Zn2(bpdc)2(bpee)] (bpdc = 4,4'-biphenyldicarboxylate; bpee = 1,2-bipyridylethene) was synthesized solvothermally and activated by removing the occluded solvent molecules from its inner channels. MOF particles were characterized by powder X-ray diffraction and fluorescence spectroscopy, showing high crystallinity and intense photoluminescence. Scanning electron microscope images revealed that MOF crystals were mainly in the form of microneedles with a high surface-to-volume ratio, which together with the high porosity of the material enhances its interaction with gas molecules. MOF crystals were soft-imprinted into cellulose acetate (CA) films on quartz at different pressures. Atomic force microscope images of soft-imprinted films showed that MOF crystals were partially embedded into the CA. With this procedure, mechanically stable films were created, with crystals protruding from the CA surface and therefore available for incoming gas molecules. The sensing properties of the films were assessed by exposing them to saturated atmospheres of 2,4-dinitrotoluene, which resulted in a substantial quenching of the fluorescence after few seconds. The soft-imprinted MOF films on CA/quartz exhibit good sensing capabilities for the detection of nitroaromatics, which was attributed to the MOF sensitivity and to the novel and more efficient film processing method based on soft-imprinting.

8.
Environ Sci Pollut Res Int ; 24(34): 26160-26171, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28386895

RESUMO

Increased atmospheric nitrogen (N) deposition is known to alter ecosystem carbon source-sink dynamics through changes in soil CO2 fluxes. However, a limited number of experiments have been conducted to assess the effects of realistic N deposition in the Mediterranean Basin, and none of them have explored the effects of N addition on soil respiration (R s ). To fill this gap, we assessed the effects of N supply on R s dynamics in the following two Mediterranean sites: Capo Caccia (Italy), where 30 kg ha-1 year-1 was supplied for 3 years, and El Regajal (Spain), where plots were treated with 10, 20, or 50 kg N ha-1 year-1 for 8 years. Results show a complex, non-linear response of soil respiration (R s ) to N additions with R s overall increasing at Capo Caccia and decreasing at El Regajal. This suggests that the response of R s to N addition depends on dose and duration of N supply, and the existence of a threshold above which the N introduced in the ecosystem can affect the ecosystem's functioning. Soil cover and seasonality of precipitations also play a key role in determining the effects of N on R s as shown by the different responses observed across seasons and in bare soil vs. the soil under canopy of the dominant species. These results show how increasing rates of N addition may influence soil C dynamics in semiarid ecosystems in the Mediterranean Basin and represent a valuable contribution for the understanding and the protection of Mediterranean ecosystems.


Assuntos
Ecossistema , Nitrogênio/química , Solo/química , Sequestro de Carbono , Itália , Nitrogênio/metabolismo , Plantas , Estações do Ano , Microbiologia do Solo , Espanha
9.
Sensors (Basel) ; 17(1)2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28025570

RESUMO

Open porous and transparent microcolumnar structures of TiO2 prepared by physical vapour deposition in glancing angle configuration (GLAD-PVD) have been used as host matrices for two different fluorescent cationic porphyrins, 5-(N-methyl 4-pyridyl)-10,15,20-triphenyl porphine chloride (MMPyP) and meso-tetra (N-methyl 4-pyridyl) porphine tetrachloride (TMPyP). The porphyrins have been anchored by electrostatic interactions to the microcolumns by self-assembly through the dip-coating method. These porphyrin/TiO2 composites have been used as gas sensors for ammonia and amines through previous protonation of the porphyrin with HCl followed by subsequent exposure to the basic analyte. UV-vis absorption, emission, and time-resolved spectroscopies have been used to confirm the protonation-deprotonation of the two porphyrins and to follow their spectral changes in the presence of the analytes. The monocationic porphyrin has been found to be more sensible (up to 10 times) than its tetracationic counterpart. This result has been attributed to the different anchoring arrangements of the two porphyrins to the TiO2 surface and their different states of aggregation within the film. Finally, there was an observed decrease of the emission fluorescence intensity in consecutive cycles of exposure and recovery due to the formation of ammonium chloride inside the film.

10.
Sensors (Basel) ; 15(5): 11118-32, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25985159

RESUMO

The anchoring effect on free-base carboxyphenyl porphyrin films using TiO2 microstructured columns as a host matrix and its influence on NO2 sensing have been studied in this work. Three porphyrins have been used: 5-(4-carboxyphenyl)10,15,20-triphenyl-21H,23H-porphyrin (MCTPP); 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,23H-porphyrin (p-TCPP); and 5,10,15,20-tetrakis(3-carboxyphenyl)-21H,23H-porphyrin (m-TCPP). The analysis of UV-Vis spectra of MCTPP/TiO2, p-TCPP/TiO2 and m-TCPP/TiO2 composite films has revealed that m-TCPP/TiO2 films are the most stable, showing less aggregation than the other porphyrins. IR spectroscopy has shown that m-TCPP is bound to TiO2 through its four carboxylic acid groups, while p-TCPP is anchored by only one or two of these groups. MCTPP can only be bound by one carboxylic acid. Consequently, the binding of p-TCPP and MCTPP to the substrate allows them to form aggregates, whereas the more fixed anchoring of m-TCPP reduces this effect. The exposure of MCTPP/TiO2, p-TCPP/TiO2 and m-TCPP/TiO2 films to NO2 has resulted in important changes in their UV-Vis spectra, revealing good sensing capabilities in all cases. The improved stability of films made with m-TCPP suggests this molecule as the best candidate among our set of porphyrins for the fabrication of NO2 sensors. Moreover, their concentration-dependent responses upon exposure to low concentrations of NO2 confirm the potential of m-TCPP as a NO2 sensor.


Assuntos
Dióxido de Nitrogênio/análise , Porfirinas/química , Titânio/química , Cinética , Modelos Lineares , Espectrofotometria Ultravioleta
11.
Glob Chang Biol ; 21(10): 3854-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25916277

RESUMO

Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment.


Assuntos
Ciclo do Carbono , Mudança Climática , Secas , Ciclo do Nitrogênio , Microbiologia do Solo , Solo/química , Florestas , Efeito Estufa , New York
12.
PLoS One ; 8(9): e75715, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069440

RESUMO

Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT) and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem.


Assuntos
Corantes , Ecossistema , Luz , Fotólise , Rodaminas/química , Luz Solar , Temperatura
13.
ACS Appl Mater Interfaces ; 4(10): 5147-54, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22985094

RESUMO

In this work, the carboxylic acid derivatives of a free-base porphyrin, 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,23H-porphyrin, and 10 of its metal derivatives (TCPPs) have been used for optical gas sensing. For this purpose, microstructured columnar TiO(2) thin films prepared by GAPVD (glancing angle physical vapor deposition) have been used as host materials for the porphyrins as they are non-dispersive and porous, allowing their use for UV-visible spectroscopy and gas sensing. The chemical binding between the dye molecules and the TiO(2) has been studied through infrared spectroscopy, and the obtained spectral changes have been found to be compatible with chelating and/or bidentate binding modes of the carboxylate groups on the TiO(2) surface. When hosted in the film, the UV-visible spectra of the porphyrins featured a blue shift and broadening of the Soret band with respect to the solution, which has been attributed to the formation of π-π aggregates between porphyrin molecules. The composite porphyrin/TiO(2) films obtained from each of the 11 porphyrins have been exposed to 12 different volatile organic compounds (VOCs), and their respective gas-sensitive properties have been analyzed as a function of the spectral changes in their Soret band region in the presence of the analytes. The set of composite films has shown high selectivity to the analyzed volatile compounds. For each analyte, an innovative way of showing the different responses has been developed. By means of this procedure, an imagelike recognition pattern has been obtained, which allows an easy identification of every compound. The kinetics of the exposure to several analytes showed a fast, reversible and reproducible response, with response times of a few seconds, which has been attributed to both the sensitivity of the porphyrins and the high porosity of the TiO(2) films. Also, increasing concentrations of the analytes resulted in an increase in the magnitude of the response, indicating that the sensor behavior is also concentration-dependent.

14.
ACS Appl Mater Interfaces ; 2(3): 712-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20356272

RESUMO

Fluorescent tetracationic porphyrin (TMPyP) molecules have been incorporated into optically transparent TiO(2) thin films acting as a host material. The films, with a columnar structure and open pores, were prepared by electron evaporation at glancing angles (GAPVD). The open porosity of the films has been estimated by measuring a water adsorption isotherm with a quartz crystal monitor. TMPyP molecules were infiltrated in the host thin films by their immersion into water solutions at controlled values of pH. The state of the adsorbed molecules, the infiltration efficiency, and the adsorption kinetics were assessed by analyzing the optical response of the films by UV-vis absorption and fluorescence techniques. The infiltration efficiency was directly correlated with the acidity of the medium, increasing at basic pHs as expected from simple considerations based on the concepts of the point of zero charge (PZC) developed for colloidal oxides. By a quantitative evaluation based on the analysis of the UV spectra, the infiltration process has been described by a Langmuir type adsorption isotherm and an Elovich-like kinetics. The accessibility of the infiltrated molecules in the TMPyP/TiO(2) composite films is assessed by following the changes of their optical properties when exposed to the acid vapors and their subsequent recovery with time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA