RESUMO
Importance: Outcomes for patients with unresectable stage III non-small cell lung cancer (NSCLC) treated with chemoradiation therapy (CRT) have improved with adjuvant immune checkpoint inhibitors, with a reported 5-year overall survival benefit of approximately 10% for adjuvant durvalumab vs placebo after completion of CRT without progression and with preserved performance status. Starting atezolizumab prior to CRT may allow more patients to benefit from immunotherapy. Objective: To evaluate clinical outcomes of patients treated with atezolizumab before and after CRT for unresectable stage III NSCLC. Design, Setting, and Participants: This single-cohort, phase II, nonrandomized controlled trial was conducted at 11 US sites. Patients with pathologically confirmed, unresectable stage III NSCLC who were treatment naive and had good performance status were enrolled between January 3, 2018, and July 24, 2019. Data were locked on March 21, 2023. Interventions: Patients received four 21-day cycles of atezolizumab, 1200 mg intravenously, with therapy administered on day 1 of each cycle. Patients not experiencing tumor progression continued to CRT (60 Gy to involved fields) concurrent with weekly carboplatin area under the curve of 2 and paclitaxel, 50 mg/m2, followed by planned consolidation carboplatin area under the curve of 6 and paclitaxel, 200 mg/m2, for two 21-day cycles. Patients not experiencing progression continued atezolizumab, 1200 mg, every 21 days to complete 1 year of therapy. Main Outcomes and Measures: The primary end point was the disease control rate at 12 weeks. Secondary end points were progression-free survival, overall survival, overall response rate, safety, and translational science end points. Results: A total of 62 patients (median [range] age, 63.9 [38.1-86.5] years; 32 female [51.6%]) were enrolled and received at least 1 dose of atezolizumab. The disease control rate at 12 weeks was 74.2% (80% CI, 65.7%-81.4%). Median progression-free survival was 30.0 months (95% CI, 15.8 to not evaluable), and the median overall survival was not reached. The overall survival rate at 24 months was 73.7% (95% CI, 63.4%-85.7%), and the overall response rate was 66.2%. Seventeen patients (27.4%) experienced grade 3 or higher immune-related adverse events, including 1 with grade 5 pneumonitis and 1 with grade 4 Guillain-Barré syndrome. Thirty patients (48.4%) experienced grade 3 or higher treatment-related adverse events. Conclusions and Relevance: These findings suggest that neoadjuvant atezolizumab merits further study based on safety and encouraging outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT03102242.
Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Quimiorradioterapia , Neoplasias Pulmonares , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Carboplatina/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia/efeitos adversos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Estadiamento de Neoplasias , Intervalo Livre de Progressão , Resultado do TratamentoRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its nutrient-scavenging ability, crucial for tumor progression. Here, we investigated the roles of caveolae-mediated endocytosis (CME) in PDAC progression. Analysis of patient data across diverse datasets revealed a strong association of high caveolin-1 (Cav-1) expression with higher histologic grade, the most aggressive PDAC molecular subtypes, and worse clinical outcomes. Cav-1 loss markedly promoted longer overall and tumor-free survival in a genetically engineered mouse model. Cav-1-deficient tumor cell lines exhibited significantly reduced proliferation, particularly under low nutrient conditions. Supplementing cells with albumin rescued the growth of Cav-1-proficient PDAC cells, but not in Cav-1-deficient PDAC cells under low glutamine conditions. In addition, Cav-1 depletion led to significant metabolic defects, including decreased glycolytic and mitochondrial metabolism, and downstream protein translation signaling pathways. These findings highlight the crucial role of Cav-1 and CME in fueling pancreatic tumorigenesis, sustaining tumor growth, and promoting survival through nutrient scavenging.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Cavéolas/metabolismo , Cavéolas/patologia , Neoplasias Pancreáticas/patologia , Endocitose , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Linhagem Celular TumoralRESUMO
Human serum albumin (HSA) improves the pharmacokinetic profile of drugs attached to it, making it an attractive carrier with proven clinical success. In our previous studies, we have shown that Caveolin-1 (Cav-1) and caveolae-mediated endocytosis play important roles in the uptake of HSA and albumin-bound drugs. Doxorubicin is an FDA-approved chemotherapeutic agent that is effective against multiple cancers, but its clinical applicability has been hampered by its high toxicity levels. In this study, a doxorubicin-prodrug was developed that could independently and avidly bind HSA in circulation, called IPBA-Dox. We first developed and characterized IPBA-Dox and confirmed that it can bind albumin in vitro while retaining a potent cytotoxic effect. We then verified that it efficiently binds to HSA in circulation, leading to an improvement in the pharmacokinetic profile of the drug. In addition, we tested our prodrug for Cav-1 selectivity and found that it preferentially affects cells that express relatively higher levels of Cav-1 in vitro and in vivo. Moreover, we found that our compound was well tolerated in vivo at concentrations at which doxorubicin was lethal. Altogether, we have developed a doxorubicin-prodrug that can successfully bind HSA, retaining a strong cytotoxic effect that preferentially targets Cav-1 positive cells while improving the general tolerability of the drug.
RESUMO
INTRODUCTION: Increasingly, early-stage non-small cell lung cancer (NSCLC) is treated with stereotactic body radiation therapy (SBRT). Although treatment is generally effective, a small subset of tumors will recur because of radioresistance. Preclinical studies suggested PI3K-AKT-mTOR activation mediates radioresistance. This study sought to validate this finding in tumor samples from patients who underwent SBRT for NSCLC. METHODS: Patients with T1-3N0 NSCLC treated with SBRT at our institution were included. Total RNA of formalin-fixed paraffin-embedded tumor biopsy specimens (pretherapy) was isolated and analyzed using the Clariom D assay. Risk scores from a PI3K activity signature and four published NSCLC signatures were generated and dichotomized by the median. Kaplan-Meier curves and Cox regressions were used to analyze their association with recurrence and overall survival (OS). The PI3K signature was also tested in a data set of resected NSCLC for additional validation. RESULTS: A total of 92 patients were included, with a median follow-up of 18.3 months for living patients. There was no association of any of the four published gene expression signatures with recurrence or OS. However, high PI3K risk score was associated with higher local recurrence (hazard ratio [HR], 11.72; 95% CI, 1.40-98.0; p = .023) and worse disease-free survival (DFS) (HR, 3.98; 95% CI, 1.57-10.09; p = .0035), but not OS (p = .49), regional recurrence (p = .15), or distant recurrence (p = .85). In the resected NSCLC data set (n = 361), high PI3K risk score was associated with decreased OS (log-rank p = .013) but not DFS (p = 0.54). CONCLUSIONS: This study validates that higher PI3K activity, measured by gene expression, is associated with local recurrence and worse DFS in early-stage NSCLC patients treated with SBRT. This may be useful in prognostication and/or tailoring treatment, and merits further validation.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Estadiamento de Neoplasias , Fosfatidilinositol 3-Quinases/genética , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/patologia , Transcriptoma , Resultado do TratamentoRESUMO
RAS mutations are among the most frequent oncogenic drivers observed in human cancers. With a lack of available treatment options, RAS-mutant cancers account for many of the deadliest cancers in the United States. Recent studies established that altered metabolic requirements are a hallmark of cancer, and many of these alterations are driven by aberrant RAS signaling. Specifically, RAS-driven cancers are characterized by upregulated glycolysis, the differential channeling of glycolytic intermediates, upregulated nutrient scavenging pathways such as autophagy and macropinocytosis, and altered glutamine utilization and mitochondrial function. This unique metabolic landscape promotes tumorigenesis, proliferation, survival in nutrient deficient environments and confers resistance to conventional cytotoxic and targeted therapies. Emerging work demonstrates how these dependencies can be therapeutically exploited in vitro and in vivo with many metabolic inhibitors currently in clinical trials. This review aims to outline the unique metabolic requirements induced by aberrant RAS signaling and how these altered dependencies present opportunities for therapeutic intervention.
Assuntos
Neoplasias , Autofagia , Glicólise , Humanos , Neoplasias/metabolismo , Oncogenes , Transdução de SinaisRESUMO
KRAS-activating mutations are oncogenic drivers and are correlated with radioresistance of multiple cancers, including colorectal cancer, but the underlying precise molecular mechanisms remain elusive. Herein we model the radiosensitivity of isogenic HCT116 and SW48 colorectal cancer cell lines bearing wild-type or various mutant KRAS isoforms. We demonstrate that KRAS mutations indeed lead to radioresistance accompanied by reduced radiotherapy-induced mitotic catastrophe and an accelerated release from G2/M arrest. Moreover, KRAS mutations result in increased DNA damage response and upregulation of 53BP1 with associated increased non-homologous end-joining (NHEJ) repair. Remarkably, KRAS mutations lead to activation of NRF2 antioxidant signaling to increase 53BP1 gene transcription. Furthermore, genetic silencing or pharmacological inhibition of KRAS, NRF2 or 53BP1 attenuates KRAS mutation-induced radioresistance, especially in G1 phase cells. These findings reveal an important role for a KRAS-induced NRF2-53BP1 axis in the DNA repair and survival of KRAS-mutant tumor cells after radiotherapy, and indicate that targeting NRF2, 53BP1 or NHEJ may represent novel strategies to selectively abrogate KRAS mutation-mediated radioresistance.
Assuntos
Neoplasias do Colo/genética , Reparo do DNA por Junção de Extremidades , Fator 2 Relacionado a NF-E2/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Tolerância a Radiação/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Apoptose/genética , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Neoplasias do Colo/radioterapia , Quebras de DNA de Cadeia Dupla , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Raios gama , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Mutação , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismoRESUMO
BACKGROUND: Optimal patient selection for radiotherapy in pancreatic ductal adenocarcinoma (PDAC) is unestablished. Molecular profiling may select patients at high risk for locoregional recurrence (LRR) who would benefit from radiation. METHODS: We included resectable pancreatic cancer (R-PDAC) patients, divided into training and validation cohorts, treated among three institutions with surgery and adjuvant chemotherapy, and borderline resectable or locally advanced pancreatic cancer (BR/LA-PDAC) patients treated with chemotherapy with or without radiation at the primary study institution. We isolated RNA from R-PDAC surgical specimens. Using NanoString, we identified miRNAs differentially expressed between normal and malignant pancreatic tissue. ElasticNet regression identified two miRNAs most predictive of LRR in the training cohort, miR-181b/d and miR-575, which were used to generate a risk score (RS). We evaluated the association of the median-dichotomized RS with recurrence and overall survival (OS). RESULTS: We identified 183 R-PDAC and 77 BR/LA-PDAC patients with median follow up of 37 months treated between 2001 and 2014. On multivariable analysis of the R-PDAC training cohort (n = 90), RS was associated with worse LRR (HR = 1.34; 95%CI 1.27-11.38; p = 0.017) and OS (HR = 2.89; 95%CI 1.10-4.76; p = 0.027). In the R-PDAC validation cohort, RS was associated with worse LRR (HR = 2.39; 95%CI 1.03-5.54; p = 0.042), but not OS (p = 0.087). For BR/LA-PDAC, RS was associated with worse LRR (HR = 2.71; 95%CI 1.14-6.48; p = 0.025), DR (HR = 1.93; 95%CI 1.10-3.38; p = 0.022), and OS (HR = 1.97; 95%CI 1.17-3.34; p = 0.011). Additionally, after stratifying by RS and receipt of radiation in BR/LA-PDAC patients, high RS patients who did not receive radiation had worse LRR (p = 0.018), DR (p = 0.006), and OS (p < 0.001) compared to patients with either low RS or patients who received radiation, irrespective of RS. CONCLUSIONS: RS predicted worse LRR and OS in R-PDAC and worse LRR, DR, and OS in BR/LA-PDAC. This may select patients who would benefit from radiation and should be validated prospectively.
RESUMO
In recent years, human serum albumin (HSA) has been characterized as an ideal drug carrier in the cancer arena. Caveolin-1 (Cav-1) has been established as the principal structural protein of caveolae and, thus, critical for caveolae-mediated endocytosis. Cav-1 has been shown to be overexpressed in cancers of the lung and pancreas, among others. We found that Cav-1 expression plays a critical role in both HSA uptake and response to albumin-based chemotherapies. As such, developing a novel albumin-based chemotherapy that is more selective for tumors with high Cav-1 expression or high levels of caveolar-endocytosis could have significant implications in biomarker-directed therapy. Herein, we present the development of a novel and effective HSA-SN-38 conjugate (SSH20). We find that SSH20 uptake decreases significantly by immunofluorescence assays and western blotting after silencing of Cav-1 expression through RNA interference. Decreased drug sensitivity occurs in Cav-1-depleted cells using cytotoxicity assays. Importantly, we find significantly reduced sensitivity to SSH20 in Cav-1-silenced tumors compared to Cav-1-expressing tumors in vivo. Notably, we show that SSH20 is significantly more potent than irinotecan in vitro and in vivo. Together, we have developed a novel HSA-conjugated chemotherapy that is potent, effective, safe, and demonstrates improved efficacy in high Cav-1-expressing tumors.
RESUMO
PURPOSE: Concurrent gemcitabine and nab-paclitaxel treatment is one of the preferred chemotherapy regimens for metastatic and locally advanced pancreatic ductal adenocarcinoma (PDAC). Previous studies demonstrate that caveolin-1 (Cav-1) expression is critical for nab-paclitaxel uptake into tumors and correlates with response. Gemcitabine increases nab-paclitaxel uptake by increasing Cav-1 expression. Thus, we hypothesized that pretreatment with gemcitabine would further enhance the sensitivity of PDAC to nab-paclitaxel by increasing Cav-1 expression and nab-paclitaxel uptake. EXPERIMENTAL DESIGN: We investigated the sensitivity of different gemcitabine and nab-paclitaxel treatment regimens in a panel of PDAC cell lines and orthotopic xenograft models. The sensitivity of different treatment regimens was compared with the standard concurrent treatment. RESULTS: Pretreatment with gemcitabine before nab-paclitaxel increased Cav-1 and albumin uptake and significantly decreased proliferation and clonogenicity compared with concurrent treatment, which correlated with increased levels of apoptosis. Cav-1 silencing reduced the uptake of albumin, and therapeutic advantage was observed when cells were pretreated with gemcitabine prior to nab-paclitaxel. In addition, we observed that pretreatment with gemcitabine resulted in partial synchronization of cells in the G2-M-phase at the time of nab-paclitaxel treatment, providing another mechanism for the benefit of altered scheduling. In heterotopic and orthotopic xenograft models, the altered schedule of gemcitabine prior to nab-paclitaxel significantly delayed tumor growth compared with concurrent delivery without added toxicity. CONCLUSIONS: Pretreatment with gemcitabine significantly increased nab-paclitaxel uptake and correlated with an increased treatment efficacy and survival benefit in preclinical models, compared with standard concurrent treatment. These results justify preclinical and clinical testing of this altered scheduling combination.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Albuminas/administração & dosagem , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Esquema de Medicação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Resultado do Tratamento , Carga Tumoral/genética , GencitabinaRESUMO
PURPOSE: The RAS/RAF/MEK/ERK signaling pathway is critical to the development of colorectal cancers, and KRAS, NRAS, and BRAF mutations foster resistance to radiation. We performed a phase I trial to determine the safety of trametinib, a potent MEK1/2 inhibitor, with 5-fluorouracil (5-FU) chemoradiation therapy (CRT) in patients with locally advanced rectal cancer (LARC). PATIENTS AND METHODS: Patients with stage II/III rectal cancer were enrolled on a phase I study with 3+3 study design, with an expansion cohort of 9 patients at the MTD. Following a 5-day trametinib lead-in, with pre- and posttreatment tumor biopsies, patients received trametinib and CRT, surgery, and adjuvant chemotherapy. Trametinib was given orally daily at 3 dose levels: 0.5 mg, 1 mg, and 2 mg. CRT consisted of infusional 5-FU 225 mg/m2/day and radiation dose of 28 daily fractions of 1.8 Gy (total 50.4 Gy). The primary endpoint was to identify the MTD and recommended phase II dose. IHC staining for phosphorylated ERK (pERK) and genomic profiling was performed on the tumor samples. RESULTS: Patients were enrolled to all dose levels, and 18 patients were evaluable for toxicities and responses. Treatment was well tolerated, and there was one dose-limiting toxicity of diarrhea, which was attributed to CRT rather than trametinib. At the 2 mg dose level, 25% had pathologic complete response. IHC staining confirmed dose-dependent decrease in pERK with increasing trametinib doses. CONCLUSIONS: The combination of trametinib with 5-FU CRT is safe and well tolerated, and may warrant additional study in a phase II trial, perhaps in a RAS/RAF-mutant selected population.
Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Idoso , Biomarcadores Tumorais , Quimiorradioterapia , Terapia Combinada , Gerenciamento Clínico , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Terapia Neoadjuvante , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Piridonas/administração & dosagem , Piridonas/efeitos adversos , Pirimidinonas/administração & dosagem , Pirimidinonas/efeitos adversos , Neoplasias Retais/etiologia , Neoplasias Retais/metabolismo , Resultado do TratamentoRESUMO
Resectable pancreatic adenocarcinoma (PC) is generally managed with surgery followed by chemotherapy, but the role of postoperative chemoradiation (pCRT) is controversial. We sought to identify a microRNA (miRNA) expression profile associated with higher risk for local-regional recurrence (LRR), which might help identify patients that may benefit from pCRT. Total RNA was isolated from viable tumor from 88 patients who underwent PC resection with or without chemotherapy, but did not receive radiation. Digital miRNA expression profiling was performed and risk scores were calculated based on the expression levels of the four most significantly correlated miRNAs, and dichotomized about the median to detect correlations between risk group, LRR and overall survival (OS). Two cohorts from The Cancer Genome Atlas (TCGA) and Seoul National University (SNU) were used for validation. Patients with high-risk scores had significantly worse LRR (p = 0.001) and worse OS (p = 0.034). Two-year OS rates for the high- and low-risk groups were 27.7% and 52.2%, respectively. On multivariable analysis, the risk score remained significantly associated with LRR (p = 0.018). When validated on TCGA data, a high-risk score was associated with worse OS on univariate (p = 0.03) and multivariable analysis (p = 0.017). When validated on the SNU cohort, a high-risk score was likewise associated with worse OS (p = 0.042). We have developed a 4-miRNA molecular signature that is associated with risk of LRR and OS after PC resection and validated on two separate cohorts. This signature has the potential to select patients most likely to benefit from pCRT, and should be tested further.
RESUMO
PURPOSE: Activating BRAF mutations, most commonly BRAFV600E, are a major oncogenic driver of many cancers. We explored whether BRAFV600E promotes radiation resistance and whether selectively targeting BRAFV600E with a BRAF inhibitor (vemurafenib, BRAFi) sensitizes BRAFV600E thyroid cancer cells to radiotherapy. EXPERIMENTAL DESIGN: Immunoblotting, neutral comet, immunocytochemistry, functional reporter, and clonogenic assays were used to analyze the outcome and molecular characteristics following radiotherapy with or without BRAFV600E or vemurafenib in thyroid cancer cells. RESULTS: BRAFV600E thyroid cancer cell lines were associated with resistance to ionizing radiation (IR), and expression of BRAFV600E into wild-type BRAF thyroid cancer cells led to IR resistance. BRAFi inhibited ERK signaling in BRAFV600E mutants, but not BRAF wild-type thyroid cancer cell lines. BRAFi selectively radiosensitized and delayed resolution of IR-induced γH2AX nuclear foci in BRAFV600E cells. Moreover, BRAFi impaired global DNA repair and altered the resolution of 53BP1 and RAD51 nuclear foci in BRAFV600E cells following IR. BRAFV600E mutants displayed enhanced nonhomologous end-joining (NHEJ) repair activity, which was abolished by BRAFi. Intriguingly, BRAFV600E mutation led to upregulation of XLF, a component of NHEJ, which was prevented by BRAFi. Importantly, BRAFi in combination with radiotherapy resulted in marked and sustained tumor regression of BRAFV600E thyroid tumor xenografts. CONCLUSIONS: BRAFV600E mutation promotes NHEJ activity leading to radioresistance and BRAFi selectively radiosensitizes BRAFV600E thyroid cancer cells through inhibiting NHEJ. Our findings suggest that combining BRAFi and radiation may improve the therapeutic outcome of patients with BRAFV600E-mutant thyroid cancer.
Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Neoplasias da Glândula Tireoide/radioterapia , Vemurafenib/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Reparo do DNA , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Tolerância a Radiação/genética , Radioterapia/métodos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Nab-paclitaxel, a nanoparticle conjugate of paclitaxel to human albumin, exhibits efficacy in pancreatic cancer, non-small cell lung cancer and breast cancer. However, there is a lack of predictive biomarkers to identify patients who might benefit most from its administration. This study addresses this gap in knowledge by identifying that caveolin-1 (Cav-1) is a candidate mechanism-based biomarker. Caveolae are small membrane invaginations important for transendothelial albumin uptake. Cav-1, the principal structural component of caveolae, is overexpressed in the cancers noted above that respond to nab-paclitaxel. Thus, we hypothesized that Cav-1 may be critical for albumin uptake in tumors and perhaps determine their response to this drug. Cav-1 protein levels correlated positively with nab-paclitaxel sensitivity. RNAi-mediated attenuation of Cav-1 expression reduced uptake of albumin and nab-paclitaxel in cancer cells and rendered them resistant to nab-paclitaxel-induced apoptosis. Conversely, Cav-1 overexpression enhanced sensitivity to nab-paclitaxel. Selection for cellular resistance to nab-paclitaxel in cell culture correlated with a loss of Cav-1 expression. In mouse xenograft models, cancer cells, where Cav-1 was attenuated, exhibited resistance to the antitumor effects of nab-paclitaxel therapy. Overall, our findings suggest Cav-1 as a predictive biomarker for the response to nab-paclitaxel and other albumin-based cancer therapeutic drugs. Cancer Res; 77(21); 5925-37. ©2017 AACR.