Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Syst Biol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158356

RESUMO

Phylogenomics has the power to uncover complex phylogenetic scenarios across the genome. In most cases, no single topology is reflected across the entire genome as the phylogenetic signal differs among genomic regions due to processes, such as introgression and incomplete lineage sorting. Baleen whales are among the largest vertebrates on Earth with a high dispersal potential in a relatively unrestricted habitat, the oceans. The fin whale (Balaenoptera physalus) is one of the most enigmatic baleen whale species, currently divided into four subspecies. It has been a matter of debate whether phylogeographic patterns explain taxonomic variation in fin whales. Here we present a chromosome-level whole genome analysis of the phylogenetic relationships among fin whales from multiple ocean basins. First, we estimated concatenated and consensus phylogenies for both the mitochondrial and nuclear genomes. The consensus phylogenies based upon the autosomal genome uncovered monophyletic clades associated with each ocean basin, aligning with the current understanding of subspecies division. Nevertheless, discordances were detected in the phylogenies based on the Y chromosome, mitochondrial genome, autosomal genome and X chromosome. Furthermore, we detected signs of introgression and pervasive phylogenetic discordance across the autosomal genome. This complex phylogenetic scenario could be explained by a puzzle of introgressive events, not yet documented in fin whales. Similarly, incomplete lineage sorting and low phylogenetic signal could lead to such phylogenetic discordances. Our study reinforces the pitfalls of relying on concatenated or single locus phylogenies to determine taxonomic relationships below the species level by illustrating the underlying nuances which some phylogenetic approaches may fail to capture. We emphasize the significance of accurate taxonomic delineation in fin whales by exploring crucial information revealed through genome-wide assessments.

2.
PLoS One ; 19(5): e0303741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809930

RESUMO

Studying sound production at different developmental stages can provide insight into the processes involved in vocal ontogeny. Humpback whales (Megaptera novaeangliae) are a known vocal learning species, but their vocal development is poorly understood. While studies of humpback whale calves in the early stages of their lives on the breeding grounds and migration routes exist, little is known about the behavior of these immature, dependent animals by the time they reach the feeding grounds. In this study, we used data from groups of North Atlantic humpback whales in the Gulf of Maine in which all members were simultaneously carrying acoustic recording tags attached with suction cups. This allowed for assignment of likely caller identity using the relative received levels of calls across tags. We analyzed data from 3 calves and 13 adults. There were high levels of call rate variation among these individuals and the results represent preliminary descriptions of calf behavior. Our analysis suggests that, in contrast to the breeding grounds or on migration, calves are no longer acoustically cryptic by the time they reach their feeding ground. Calves and adults both produce calls in bouts, but there may be some differences in bout parameters like inter-call intervals and bout durations. Calves were able to produce most of the adult vocal repertoire but used different call types in different proportions. Finally, we found evidence of immature call types in calves, akin to protosyllables used in babbling in other mammals, including humans. Overall, the sound production of humpback whale calves on the feeding grounds appears to be already similar to that of adults, but with differences in line with ontogenetic changes observed in other vocal learning species.


Assuntos
Jubarte , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Jubarte/fisiologia , Comportamento Alimentar/fisiologia , Acústica , Feminino , Masculino
3.
R Soc Open Sci ; 11(3): 231608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481982

RESUMO

Acoustic recording tags provide fine-scale data linking acoustic signalling with individual behaviour; however, when an animal is in a group, it is challenging to tease apart calls of conspecifics and identify which individuals produce each call. This, in turn, prohibits a robust assessment of individual acoustic behaviour including call rates and silent periods, call bout production within and between individuals, and caller location. To overcome this challenge, we simultaneously instrumented small groups of humpback whales on a western North Atlantic feeding ground with sound and movement recording tags. This approach enabled a comparison of the relative amplitude of each call across individuals to infer caller identity for 97% of calls. We recorded variable call rates across individuals (mean = 23 calls/h) and groups (mean = 55 calls/h). Calls were produced throughout dives, and most calls were produced in bouts with short inter-call intervals of 2.2 s. Most calls received a likely response from a conspecific within 100 s. This caller identification (ID) method facilitates studying both individual- and group-level acoustic behaviour, yielding novel results about the nature of sequence production and vocal exchanges in humpback whale social calls. Future studies can expand on these caller ID methods for understanding intra-group communication across taxa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA