Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D850-D858, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37855690

RESUMO

Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.


Assuntos
Caenorhabditis , Bases de Dados Genéticas , Animais , Caenorhabditis/classificação , Caenorhabditis/genética , Caenorhabditis elegans/genética , Genoma , Estudo de Associação Genômica Ampla , Genômica
2.
Nature ; 607(7919): 571-577, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794472

RESUMO

Individuals can exhibit differences in metabolism that are caused by the interplay of genetic background, nutritional input, microbiota and other environmental factors1-4. It is difficult to connect differences in metabolism to genomic variation and derive underlying molecular mechanisms in humans, owing to differences in diet and lifestyle, among others. Here we use the nematode Caenorhabditis elegans as a model to study inter-individual variation in metabolism. By comparing three wild strains and the commonly used N2 laboratory strain, we find differences in the abundances of both known metabolites and those that have not to our knowledge been previously described. The latter metabolites include conjugates between 3-hydroxypropionate (3HP) and several amino acids (3HP-AAs), which are much higher in abundance in one of the wild strains. 3HP is an intermediate in the propionate shunt pathway, which is activated when flux through the canonical, vitamin-B12-dependent propionate breakdown pathway is perturbed5. We show that increased accumulation of 3HP-AAs is caused by genetic variation in HPHD-1, for which 3HP is a substrate. Our results suggest that the production of 3HP-AAs represents a 'shunt-within-a-shunt' pathway to accommodate a reduction-of-function allele in hphd-1. This study provides a step towards the development of metabolic network models that capture individual-specific differences of metabolism and more closely represent the diversity that is found in entire species.


Assuntos
Caenorhabditis elegans , Redes e Vias Metabólicas , Animais , Humanos , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aminoácidos/metabolismo , Caenorhabditis elegans/classificação , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Redes e Vias Metabólicas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Animais , Propionatos/metabolismo , Vitamina B 12/metabolismo
3.
Nat Commun ; 13(1): 3462, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710766

RESUMO

Phenotypic variation in organism-level traits has been studied in Caenorhabditis elegans wild strains, but the impacts of differences in gene expression and the underlying regulatory mechanisms are largely unknown. Here, we use natural variation in gene expression to connect genetic variants to differences in organismal-level traits, including drug and toxicant responses. We perform transcriptomic analyses on 207 genetically distinct C. elegans wild strains to study natural regulatory variation of gene expression. Using this massive dataset, we perform genome-wide association mappings to investigate the genetic basis underlying gene expression variation and reveal complex genetic architectures. We find a large collection of hotspots enriched for expression quantitative trait loci across the genome. We further use mediation analysis to understand how gene expression variation could underlie organism-level phenotypic variation for a variety of complex traits. These results reveal the natural diversity in gene expression and possible regulatory mechanisms in this keystone model organism, highlighting the promise of using gene expression variation to understand how phenotypic diversity is generated.


Assuntos
Caenorhabditis elegans , Herança Multifatorial , Animais , Caenorhabditis elegans/genética , Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética
4.
J Vis Exp ; (181)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35311808

RESUMO

Caenorhabditis elegans is one of the major model organisms in biology, but only recently have researchers focused on its natural ecology. The relative sparsity of information about C. elegans in its natural context comes from the challenges involved in the identification of the small nematode in nature. Despite these challenges, an increasing focus on the ecology of C. elegans has caused a wealth of new information regarding its life outside of the laboratory. The intensified search for C. elegans in nature has contributed to the discovery of many new Caenorhabditis species and revealed that congeneric nematodes frequently cohabitate in the wild, where they feed on microbial blooms associated with rotting plant material. The identification of new species has also revealed that the androdioecious mating system of males and self-fertilizing hermaphrodites has evolved three times independently within Caenorhabditis. The other two selfing species, C. briggsae and C. tropicalis, share the experimental advantages of C. elegans and have enabled comparative studies into the mechanistic basis of important traits, including self-fertilization. Despite these advances, much remains to be learned about the ecology and natural diversity of these important species. For example, we still lack functional information for many of their genes, which might only be attained through an understanding of their natural ecology. To facilitate ecological research of selfing Caenorhabditis nematodes, we developed a highly scalable method to collect nematodes from the wild. Our method makes use of mobile data collection platforms, cloud-based databases, and the R software environment to enhance researchers' ability to collect nematodes from the wild, record associated ecological data, and identify wild nematodes using molecular barcodes.


Assuntos
Caenorhabditis , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Masculino , Plantas , Reprodução
5.
Mol Ecol ; 31(8): 2327-2347, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35167162

RESUMO

The nematode Caenorhabditis elegans is among the most widely studied organisms, but relatively little is known about its natural ecology. Genetic diversity is low across much of the globe but high in the Hawaiian Islands and across the Pacific Rim. To characterize the niche and genetic diversity of C. elegans on the Hawaiian Islands and to explore how genetic diversity might be influenced by local adaptation, we repeatedly sampled nematodes over a three-year period, measured various environmental parameters at each sampling site, and whole-genome sequenced the C. elegans isolates that we identified. We found that the typical Hawaiian C. elegans niche comprises moderately moist native forests at high elevations (500-1,500 m) where ambient air temperatures are cool (15-20°C). Compared to other Caenorhabditis species found on the Hawaiian Islands (e.g., Caenorhabditis briggsae and Caenorhabditis tropicalis), we found that C. elegans were enriched in native habitats. We measured levels of genetic diversity and differentiation among Hawaiian C. elegans and found evidence of seven genetically distinct groups distributed across the islands. Then, we scanned these genomes for signatures of local adaptation and identified 18 distinct regions that overlap with hyper-divergent regions, which may be maintained by balancing selection and are enriched for genes related to environmental sensing, xenobiotic detoxification, and pathogen resistance. These results provide strong evidence of local adaptation among Hawaiian C. elegans and contribute to our understanding of the forces that shape genetic diversity on the most remote volcanic archipelago in the world.


Assuntos
Caenorhabditis elegans , Caenorhabditis , Animais , Caenorhabditis/genética , Variação Genética/genética , Havaí , Ilhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA