Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161487

RESUMO

As the drive to improve the cost, performance characteristics and safety of lithium-ion batteries increases with adoption, one area where significant value could be added is that of battery diagnostics. This paper documents an investigation into the use of plasmonic-based optical fibre sensors, inserted internally into 1.4 Ah lithium-ion pouch cells, as a real time and in-situ diagnostic technique. The successful implementation of the fibres inside pouch cells is detailed and promising correlation with battery state is reported, while having negligible impact on cell performance in terms of capacity and columbic efficiency. The testing carried out includes standard cycling and galvanostatic intermittent titration technique (GITT) tests, and the use of a reference electrode to correlate with the anode and cathode readings separately. Further observations are made around the sensor and analyte interaction mechanisms, robustness of sensors and suggested further developments. These finding show that a plasmonic-based optical fibre sensor may have potential as an opto-electrochemical diagnostic technique for lithium-ion batteries, offering an unprecedented view into internal cell phenomena.


Assuntos
Lítio , Fibras Ópticas , Fontes de Energia Elétrica , Eletrodos , Íons
2.
Nanotechnology ; 28(19): 195403, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28352001

RESUMO

Nano-sized Mo-doped titania (Mo0.1Ti0.9O2) and Nb-doped titania (Nb0.25Ti0.75O2) were directly synthesized via a continuous hydrothermal flow synthesis process. Materials characterization was conducted using physical techniques such as transmission electron microscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller specific surface area measurements and energy dispersive x-ray spectroscopy. Hybrid Li-ion supercapacitors were made with either a Mo-doped or Nb-doped TiO2 negative electrode material and an activated carbon (AC) positive electrode. Cells were evaluated using electrochemical testing (cyclic voltammetry, constant charge discharge cycling). The hybrid Li-ion capacitors showed good energy densities at moderate power densities. When cycled in the potential window 0.5-3.0 V, the Mo0.1Ti0.9O2/AC hybrid supercapacitor showed the highest energy densities of 51 Wh kg-1 at a power of 180 W kg-1 with energy densities rapidly declining with increasing applied specific current. In comparison, the Nb0.25Ti0.75O2/AC hybrid supercapacitor maintained its energy density of 45 Wh kg-1 at 180 W kg-1 better, showing 36 Wh g-1 at 3200 W kg-1, which is a very promising mix of high energy and power densities. Reducing the voltage window to the range 1.0-3.0 V led to an increase in power density, with the Mo0.1Ti0.9O2/AC hybrid supercapacitor giving energy densities of 12 Wh kg-1 and 2.5 Wh kg-1 at power densities of 6700 W kg-1 and 14 000 W kg-1, respectively.

3.
Phys Chem Chem Phys ; 18(44): 30677-30685, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27790666

RESUMO

Hybrid anode materials consisting of micro-sized silicon (Si) particles interconnected with few-layer graphene (FLG) nanoplatelets and sodium-neutralized poly(acrylic acid) as a binder were evaluated for Li-ion batteries. The hybrid film has demonstrated a reversible discharge capacity of ∼1800 mA h g-1 with a capacity retention of 97% after 200 cycles. The superior electrochemical properties of the hybrid anodes are attributed to a durable, hierarchical conductive network formed between Si particles and the multi-scale carbon additives, with enhanced cohesion by the functional polymer binder. Furthermore, improved solid electrolyte interphase (SEI) stability is achieved from the electrolyte additives, due to the formation of a kinetically stable film on the surface of the Si.

4.
Phys Chem Chem Phys ; 15(10): 3518-26, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23377101

RESUMO

Birnessite nanotubes and activated carbon electrodes have been used in supercapacitor cells to assess the performance of new aqueous based electrolyte systems at temperatures as low as -30 °C. The addition of ethylene glycol to aqueous sodium, lithium, potassium and ammonium sulfates has resulted in electrolytes that are still in liquid phase at such low temperatures. Extensive electrochemical testing showed that in such systems, operation of these aqueous based supercapacitors is possible at -30 °C with a specific capacitance of over 30 F g(-1) and good cycleability.

5.
Biosens Bioelectron ; 24(7): 1931-6, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19022647

RESUMO

A microbial fuel cell (MFC) has been developed for removal of sulfur-based pollutants and can be used for simultaneous wastewater treatment and electricity generation. This fuel cell uses an activated carbon cloth+carbon fibre veil composite anode, air-breathing dual cathodes and the sulfate-reducing species Desulfovibrio desulfuricans. 1.16gdm(-3) sulfite and 0.97gdm(-3) thiosulfate were removed from the wastewater at 22 degrees C, representing sulfite and thiosulfate removal conversions of 91% and 86%, respectively. The anode potential was controlled by the concentration of sulfide in the compartment. The performance of the cathode assembly was affected by the concentration of protons in the cation-exchanging ionomer with which the electrocatalyst is co-bound at the three-phase (air, catalyst and support) boundary.


Assuntos
Desulfovibrio/citologia , Desulfovibrio/metabolismo , Fontes de Energia Elétrica/microbiologia , Poluentes Ambientais/metabolismo , Enxofre/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/isolamento & purificação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Angew Chem Int Ed Engl ; 47(9): 1774-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18205150
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA