Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
JAMA ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320881
2.
bioRxiv ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39314385

RESUMO

Hematopoietic stem cells are regulated by endothelial and mesenchymal stromal cells in the marrow niche1-3. Leukemogenesis was long believed to be solely driven by genetic perturbations in hematopoietic cells but introduction of genetic mutations in the microenvironment demonstrated the ability of niche cells to drive disease progression4-8. The mechanisms by which the stem cell niche induces leukemia remain poorly understood. Here, using cellular barcoding in zebrafish, we found that clones of niche endothelial and stromal cells are significantly expanded in leukemic marrows. The pro-angiogenic peptide apelin secreted by leukemic cells induced sinusoidal endothelial cell clonal selection and transcriptional reprogramming towards an angiogenic state to promote leukemogenesis in vivo. Overexpression of apelin in normal hematopoietic stem cells led to clonal amplification of the niche endothelial cells and promotes clonal dominance of blood cells. Knock-out of apelin in leukemic zebrafish resulted in a significant reduction in disease progression. Our results demonstrate that leukemic cells remodel the clonal and transcriptional landscape of the marrow niche to promote leukemogenesis and provide a potential therapeutic opportunity for anti-apelin treatment.

3.
Int J Numer Method Biomed Eng ; 40(8): e3844, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38952068

RESUMO

Intracranial aneurysms (IAs) pose severe health risks influenced by hemodynamics. This study focuses on the intricate characterization of hemodynamic conditions within the IA walls and their influence on bleb development, aiming to enhance understanding of aneurysm stability and the risk of rupture. The methods emphasized utilizing a comprehensive dataset of 359 IAs and 213 IA blebs from 268 patients to reconstruct patient-specific vascular models, analyzing blood flow using finite element methods to solve the unsteady Navier-Stokes equations, the segmentation of aneurysm wall subregions and the hemodynamic metrics wall shear stress (WSS), its metrics, and the critical points in WSS fields were computed and analyzed across different aneurysm subregions defined by saccular, streamwise, and topographical divisions. The results revealed significant variations in these metrics, correlating distinct hemodynamic environments with wall features on the aneurysm walls, such as bleb formation. Critical findings indicated that regions with low WSS and high OSI, particularly in the body and central regions of aneurysms, are prone to conditions that promote bleb formation. Conversely, areas exposed to high WSS and positive divergence, like the aneurysm neck, inflow, and outflow regions, exhibited a different but substantial risk profile for bleb development, influenced by flow impingements and convergences. These insights highlight the complexity of aneurysm behavior, suggesting that both high and low-shear environments can contribute to aneurysm pathology through distinct mechanisms.


Assuntos
Hemodinâmica , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/fisiopatologia , Hemodinâmica/fisiologia , Masculino , Feminino , Modelos Cardiovasculares , Estresse Mecânico , Pessoa de Meia-Idade , Análise de Elementos Finitos
4.
ArXiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38855550

RESUMO

Current mechanical models of the bladder largely idealize the bladder as spherical with uniform thickness. This present study aims to investigate this idealization using micro-CT to generate 3D reconstructed models of rat bladders at 10-20 micrometer resolution in both voided and filled states. Applied to three rat bladders, this approach identifies shape, volume, and thickness variations under different pressures. These results demonstrate the filling/voiding process is far from the idealized spherical inflation/contraction. However, the geometry idealizations may be reasonable in cases where the filled bladder geometry is of importance, such as in studies of growth and remodeling.

5.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895208

RESUMO

A defined number of hematopoietic stem cell (HSC) clones are born during development and expand to form the pool of adult stem cells. An intricate balance between self-renewal and differentiation of these HSCs supports hematopoiesis for life. HSC fate is determined by complex transcription factor networks that drive cell-type specific gene programs. The transcription factor RUNX1 is required for definitive hematopoiesis, and mutations in Runx1 have been shown to reduce clonal diversity. The RUNX1 cofactor, CBFý, stabilizes RUNX1 binding to DNA, and disruption of their interaction alters downstream gene expression. Chemical screening for modulators of Runx1 and HSC expansion in zebrafish led us to identify a new mechanism for the RUNX1 inhibitor, Ro5-3335. We found that Ro5-3335 increased HSC divisions in zebrafish, and animals transplanted with Ro5-3335 treated cells had enhanced chimerism compared to untreated cells. Using human CD34+ cells, we show that Ro5-3335 remodels the RUNX1 transcription complex by binding to ELF1, independent of CBFý. This allows specific expression of cell cycle and hematopoietic genes that enhance HSC self-renewal and prevent differentiation. Furthermore, we provide the first evidence to show that it is possible to pharmacologically increase the number of stem cell clones in vivo , revealing a previously unknown mechanism for enhancing clonal diversity. Our studies have revealed a mechanism by which binding partners of RUNX1 determine cell fate, with ELF transcription factors guiding cell division. This information could lead to treatments that enhance clonal diversity for blood diseases.

6.
Int J Numer Method Biomed Eng ; 40(8): e3837, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839043

RESUMO

The mechanisms behind intracranial aneurysm formation and rupture are not fully understood, with factors such as location, patient demographics, and hemodynamics playing a role. Additionally, the significance of anatomical features like blebs in ruptures is debated. This highlights the necessity for comprehensive research that combines patient-specific risk factors with a detailed analysis of local hemodynamic characteristics at bleb and rupture sites. Our study analyzed 359 intracranial aneurysms from 268 patients, reconstructing patient-specific models for hemodynamic simulations based on 3D rotational angiographic images and intraoperative videos. We identified aneurysm subregions and delineated rupture sites, characterizing blebs and their regional overlap, employing statistical comparisons across demographics, and other risk factors. This work identifies patterns in aneurysm rupture sites, predominantly at the dome, with variations across patient demographics. Hypertensive and anterior communicating artery (ACom) aneurysms showed specific rupture patterns and bleb associations, indicating two pathways: high-flow in ACom with thin blebs at impingement sites and low-flow, oscillatory conditions in middle cerebral artery (MCA) aneurysms fostering thick blebs. Bleb characteristics varied with gender, age, and smoking, linking rupture risks to hemodynamic factors and patient profiles. These insights enhance understanding of the hemodynamic mechanisms leading to rupture events. This analysis elucidates the role of localized hemodynamics in intracranial aneurysm rupture, challenging the emphasis on location by revealing how flow variations influence stability and risk. We identify two pathways to wall failure-high-flow and low-flow conditions-highlighting the complexity of aneurysm behavior. Additionally, this research advances our knowledge of how inherent patient-specific characteristics impact these processes, which need further investigation.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/fisiopatologia , Masculino , Feminino , Aneurisma Roto/fisiopatologia , Pessoa de Meia-Idade , Hemodinâmica/fisiologia , Idoso , Adulto , Fatores de Risco , Modelos Cardiovasculares , Artéria Cerebral Média/fisiopatologia
7.
ArXiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38764590

RESUMO

The smooth muscle bundles (SMBs) in the bladder act as contractile elements which enable the bladder to void effectively. In contrast to skeletal muscles, these bundles are not highly aligned, rather they are oriented more heterogeneously throughout the bladder wall. In this work, for the first time, this regional orientation of the SMBs is quantified across the whole bladder, without the need for optical clearing or cryosectioning. Immunohistochemistry staining was utilized to visualize smooth muscle cell actin in multiphoton microscopy (MPM) images of bladder smooth muscle bundles (SMBs). Feature vectors for each pixel were generated using a range of filters, including Gaussian blur, Gaussian gradient magnitude, Laplacian of Gaussian, Hessian eigenvalues, structure tensor eigenvalues, Gabor, and Sobel gradients. A Random Forest classifier was subsequently trained to automate the segmentation of SMBs in the MPM images. Finally, the orientation of SMBs in each bladder region was quantified using the CT-FIRE package. This information is essential for biomechanical models of the bladder that include contractile elements.

8.
Int Neurourol J ; 28(Suppl 1): 12-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38461853

RESUMO

Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or without urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, aging, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myogenic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic contraction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine (ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals in the afferent nerve transmission process. ß3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhibition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a ß3-agonist, prevents ACh release in the BOO-induced detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via urothelial ß3-AR.

9.
Microsc Microanal ; 30(2): 342-358, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38525887

RESUMO

Deviation of blood flow from an optimal range is known to be associated with the initiation and progression of vascular pathologies. Important open questions remain about how the abnormal flow drives specific wall changes in pathologies such as cerebral aneurysms where the flow is highly heterogeneous and complex. This knowledge gap precludes the clinical use of readily available flow data to predict outcomes and improve treatment of these diseases. As both flow and the pathological wall changes are spatially heterogeneous, a crucial requirement for progress in this area is a methodology for acquiring and comapping local vascular wall biology data with local hemodynamic data. Here, we developed an imaging pipeline to address this pressing need. A protocol that employs scanning multiphoton microscopy was developed to obtain three-dimensional (3D) datasets for smooth muscle actin, collagen, and elastin in intact vascular specimens. A cluster analysis was introduced to objectively categorize the smooth muscle cells (SMC) across the vascular specimen based on SMC actin density. Finally, direct quantitative comparison of local flow and wall biology in 3D intact specimens was achieved by comapping both heterogeneous SMC data and wall thickness to patient-specific hemodynamic results.


Assuntos
Matriz Extracelular , Hemodinâmica , Microscopia de Fluorescência por Excitação Multifotônica , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/citologia , Actinas/metabolismo , Animais , Colágeno/metabolismo , Humanos , Elastina/metabolismo , Elastina/análise , Imageamento Tridimensional/métodos , Artérias
10.
ArXiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38313202

RESUMO

Vascular calcification is implicated as an important factor in major adverse cardiovascular events (MACE), including heart attack and stroke. A controversy remains over how to integrate the diverse forms of vascular calcification into clinical risk assessment tools. Even the commonly used calcium score for coronary arteries, which assumes risk scales positively with total calcification, has important inconsistencies. Fundamental studies are needed to determine how risk is influenced by the diverse calcification phenotypes. However, studies of these kinds are hindered by the lack of high-throughput, objective, and non-destructive tools for classifying calcification in imaging data sets. Here, we introduce a new classification system for phenotyping calcification along with a semi-automated, non-destructive pipeline that can distinguish these phenotypes in even atherosclerotic tissues. The pipeline includes a deep-learning-based framework for segmenting lipid pools in noisy µ-CT images and an unsupervised clustering framework for categorizing calcification based on size, clustering, and topology. This approach is illustrated for five vascular specimens, providing phenotyping for thousands of calcification particles across as many as 3200 images in less than seven hours. Average Dice Similarity Coefficients of 0.96 and 0.87 could be achieved for tissue and lipid pool, respectively, with training and validation needed on only 13 images despite the high heterogeneity in these tissues. By introducing an efficient and comprehensive approach to phenotyping calcification, this work enables large-scale studies to identify a more reliable indicator of the risk of cardiovascular events, a leading cause of global mortality and morbidity.

11.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273563

RESUMO

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Assuntos
Ecossistema , Água Subterrânea , Biodiversidade , Água Doce , Poluição Ambiental
12.
J Neurointerv Surg ; 16(4): 392-397, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37230750

RESUMO

BACKGROUND: The presence of blebs increases the rupture risk of intracranial aneurysms (IAs). OBJECTIVE: To evaluate whether cross-sectional bleb formation models can identify aneurysms with focalized enlargement in longitudinal series. METHODS: Hemodynamic, geometric, and anatomical variables derived from computational fluid dynamics models of 2265 IAs from a cross-sectional dataset were used to train machine learning (ML) models for bleb development. ML algorithms, including logistic regression, random forest, bagging method, support vector machine, and K-nearest neighbors, were validated using an independent cross-sectional dataset of 266 IAs. The models' ability to identify aneurysms with focalized enlargement was evaluated using a separate longitudinal dataset of 174 IAs. Model performance was quantified by the area under the receiving operating characteristic curve (AUC), the sensitivity and specificity, positive predictive value, negative predictive value, F1 score, balanced accuracy, and misclassification error. RESULTS: The final model, with three hemodynamic and four geometrical variables, along with aneurysm location and morphology, identified strong inflow jets, non-uniform wall shear stress with high peaks, larger sizes, and elongated shapes as indicators of a higher risk of focal growth over time. The logistic regression model demonstrated the best performance on the longitudinal series, achieving an AUC of 0.9, sensitivity of 85%, specificity of 75%, balanced accuracy of 80%, and a misclassification error of 21%. CONCLUSIONS: Models trained with cross-sectional data can identify aneurysms prone to future focalized growth with good accuracy. These models could potentially be used as early indicators of future risk in clinical practice.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Estudos Transversais , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Hemodinâmica , Aprendizado de Máquina , Aneurisma Roto/cirurgia
13.
ArXiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292464

RESUMO

Deviation of blood flow from an optimal range is known to be associated with the initiation and progression of vascular pathologies. Important open questions remain about how the abnormal flow drives specific wall changes in pathologies such as cerebral aneurysms where the flow is highly heterogeneous and complex. This knowledge gap precludes the clinical use of readily available flow data to predict outcomes and improve treatment of these diseases. As both flow and the pathological wall changes are spatially heterogeneous, a crucial requirement for progress in this area is a methodology for co-mapping local data from vascular wall biology with local hemodynamic data. In this study, we developed an imaging pipeline to address this pressing need. A protocol that employs scanning multiphoton microscopy was designed to obtain 3D data sets for smooth muscle actin, collagen and elastin in intact vascular specimens. A cluster analysis was developed to objectively categorize the smooth muscle cells (SMC) across the vascular specimen based on SMC density. In the final step in this pipeline, the location specific categorization of SMC, along with wall thickness was co-mapped with patient specific hemodynamic results, enabling direct quantitative comparison of local flow and wall biology in 3D intact specimens.

14.
Science ; 381(6664): 1331-1337, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733873

RESUMO

Polycomb repressive complex 2 (PRC2) silences genes through trimethylation of histone H3K27. PRC2 associates with numerous precursor messenger RNAs (pre-mRNAs) and long noncoding RNAs (lncRNAs) with a binding preference for G-quadruplex RNA. In this work, we present a 3.3-Å-resolution cryo-electron microscopy structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface composed of two copies of the catalytic subunit EZH2, thereby blocking nucleosome DNA interaction and histone H3 tail accessibility. Furthermore, an RNA-binding loop of EZH2 facilitates the handoff between RNA and DNA, another activity implicated in PRC2 regulation by RNA. We identified a gain-of-function mutation in this loop that activates PRC2 in zebrafish. Our results reveal mechanisms for RNA-mediated regulation of a chromatin-modifying enzyme.


Assuntos
Quadruplex G , Complexo Repressor Polycomb 2 , Precursores de RNA , RNA Longo não Codificante , Animais , Microscopia Crioeletrônica , Histonas/genética , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Mutação com Ganho de Função , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Cristalografia por Raios X , Conformação Proteica , Multimerização Proteica
15.
Artigo em Inglês | MEDLINE | ID: mdl-37463319

RESUMO

BACKGROUND: Lower urinary tract syndrome (LUTS) is a group of urinary tract symptoms and signs which can include urinary incontinence. Advancing age is a major risk factors for LUTS; however the underlying biochemical mechanisms of age-related LUTS remain unknown. HX (hypoxanthine) is a purine metabolite associated with generation of tissue damaging reactive oxygen species (ROS). This study tested the hypothesis that exposure of the adult bladder to HX-ROS over time damages key LUT elements, mimicking qualitatively some of the changes observed with aging. METHODS: Adult 3-month-old female Fischer 344 (F344) rats were treated with vehicle or HX (10 mg/kg/day; 3 weeks) administered in drinking water. Targeted purine metabolomics and molecular approaches were used to assess purine metabolites and biomarkers for oxidative stress and cellular damage. Biomechanical approaches assessed LUT structure and measurements of LUT function (using custom-metabolic cages and cystometry) were also employed. RESULTS: HX exposure increased biomarkers indicative of oxidative stress, pathophysiological ROS production and depletion of cellular energy with declines in NAD + levels. Moreover, HX treatment caused bladder remodeling and decreased the intercontraction interval and leak point pressure (surrogate measure to assess stress urinary incontinence). CONCLUSIONS: These studies provide evidence that in adult rats chronic exposure to HX causes changes in voiding behavior and in bladder structure resembling alterations observed with aging. These results suggest that increased levels of uro-damaging HX were associated with ROS/oxidative stress-associated cellular damage which may be central to age-associated development of LUTS, opening up potential opportunities for geroscience-guided interventions.

16.
Mol Cell ; 83(14): 2449-2463.e13, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402367

RESUMO

Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.


Assuntos
RNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , RNA/metabolismo , Sítios de Ligação , Ligação Proteica , DNA/genética
17.
Int J Numer Method Biomed Eng ; 39(8): e3740, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288602

RESUMO

The goal of this study was to test if CFD-based virtual angiograms could be used to automatically discriminate between intracranial aneurysms (IAs) with and without flow stagnation. Time density curves (TDC) were extracted from patient digital subtraction angiography (DSA) image sequences by computing the average gray level intensity inside the aneurysm region and used to define injection profiles for each subject. Subject-specific 3D models were reconstructed from 3D rotational angiography (3DRA) and computational fluid dynamics (CFD) simulations were performed to simulate the blood flow inside IAs. Transport equations were solved numerically to simulate the dynamics of contrast injection into the parent arteries and IAs and then the contrast retention time (RET) was calculated. The importance of gravitational pooling of contrast agent within the aneurysm was evaluated by modeling contrast agent and blood as a mixture of two fluids with different densities and viscosities. Virtual angiograms can reproduce DSA sequences if the correct injection profile is used. RET can identify aneurysms with significant flow stagnation even when the injection profile is not known. Using a small sample of 14 IAs of which seven were previously classified as having flow stagnation, it was found that a threshold RET value of 0.46 s can successfully identify flow stagnation. CFD-based prediction of stagnation was in more than 90% agreement with independent visual DSA assessment of stagnation in a second sample of 34 IAs. While gravitational pooling prolonged contrast retention time it did not affect the predictive capabilities of RET. CFD-based virtual angiograms can detect flow stagnation in IAs and can be used to automatically identify aneurysms with flow stagnation even without including gravitational effects on contrast agents.


Assuntos
Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Meios de Contraste , Hidrodinâmica , Angiografia Digital , Hemodinâmica , Imageamento Tridimensional
18.
Int J Comput Assist Radiol Surg ; 18(12): 2243-2252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36877287

RESUMO

PURPOSE: Intracranial aneurysms (IAs) are pathological changes of the intracranial vessel wall, although clinical image data can only show the vessel lumen. Histology can provide wall information but is typically restricted to ex vivo 2D slices where the shape of the tissue is altered. METHODS: We developed a visual exploration pipeline for a comprehensive view of an IA. We extract multimodal information (like stain classification and segmentation of histologic images) and combine them via 2D to 3D mapping and virtual inflation of deformed tissue. Histological data, including four stains, micro-CT data and segmented calcifications as well as hemodynamic information like wall shear stress (WSS), are combined with the 3D model of the resected aneurysm. RESULTS: Calcifications were mostly present in the tissue part with increased WSS. In the 3D model, an area of increased wall thickness was identified and correlated to histology, where the Oil red O (ORO) stained images showed a lipid accumulation and the alpha-smooth muscle actin (aSMA) stained images showed a slight loss of muscle cells. CONCLUSION: Our visual exploration pipeline combines multimodal information about the aneurysm wall to improve the understanding of wall changes and IA development. The user can identify regions and correlate how hemodynamic forces, e.g. WSS, are reflected by histological structures of the vessel wall, wall thickness and calcifications.


Assuntos
Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/patologia , Hemodinâmica/fisiologia , Imageamento Tridimensional/métodos , Estresse Mecânico
20.
Microb Ecol ; 86(2): 1438-1441, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36112189

RESUMO

Water is the most indispensable natural resource; yet, organic pollution of freshwater sources is widespread. In recent years, there has been increasing concern over the vast array of emerging organic contaminants (EOCs) in the effluent of wastewater treatment plants (WWTPs). Several of these EOCs are degraded within the pore space of riverbeds by active microbial consortia. However, the mechanisms behind this ecosystem service are largely unknown. Here, we report how phosphate concentration and predator-prey interactions drive the capacity of bacteria to process a model EOC (ibuprofen). The presence of phosphate had a significant positive effect on the population growth rate of an ibuprofen-degrading strain. Thus, when phosphate was present, ibuprofen removal efficiency increased. Moreover, low and medium levels of predation, by a ciliated protozoan, stimulated bacterial population growth. This unimodal effect of predation was lost under high phosphate concentration, resulting in the flattening of the relationships between predator density and population growth of ibuprofen degraders. Our results suggest that moderate nutrient and predation levels promote the growth rate of bacterial degraders and, consequently, the self-purifying capability of the system. These findings enhance our understanding of the mechanisms by which riverbed communities drive the processing of EOCs.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Ibuprofeno/metabolismo , Comportamento Predatório , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA