RESUMO
Understanding of molecular mechanisms contributing to the pathophysiology of endometriosis, and upstream drivers of lesion formation, remains limited. Using a C57Bl/6 mouse model in which decidualized endometrial tissue is injected subcutaneously in the abdomen of recipient mice, we generated a comprehensive profile of gene expression in decidualized endometrial tissue (n=4), and in endometriosis-like lesions at Day 7 (n=4) and Day 14 (n=4) of formation. High-throughput mRNA sequencing allowed identification of genes and pathways involved in the initiation and progression of endometriosis-like lesions. We observed distinct patterns of gene expression with substantial differences between the lesions and the decidualized endometrium that remained stable across the two lesion timepoints, and showed similarity to transcriptional changes implicated in human endometriosis lesion formation. Pathway enrichment analysis revealed several immune and inflammatory response-associated canonical pathways, multiple potential upstream regulators, and involvement of genes not previously implicated in endometriosis pathogenesis, including IRF2BP2 and ZBTB10, suggesting novel roles in disease progression. Collectively, the provided data will be a useful resource to inform research on the molecular mechanisms contributing to endometriosis-like lesion development in this mouse model.
Assuntos
Endometriose , Camundongos Endogâmicos C57BL , Endometriose/genética , Endometriose/patologia , Animais , Feminino , Análise de Sequência de RNA , Modelos Animais de Doenças , Camundongos , Endométrio/patologia , Endométrio/metabolismo , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma/genética , HumanosRESUMO
Abstract: Seminal fluid extracellular vesicles (SFEVs) have previously been shown to interact with spermatozoa and influence their fertilisation capacity. Here, we sought to extend these studies by exploring the functional consequences of SFEV interactions with human spermatozoa. SFEVs were isolated from the seminal fluid of normozoospermic donors prior to assessing the kinetics of sperm-SFEV binding in vitro, as well as the effects of these interactions on sperm capacitation, acrosomal exocytosis, and motility profile. Biotin-labelled SFEV proteins were transferred primarily to the flagellum of spermatozoa within minutes of co-incubation, although additional foci of SFEV biotinylated proteins also labelled the mid-piece and head domain. Functional analyses of high-quality spermatozoa collected following liquefaction revealed that SFEVs did not influence sperm motility during incubation at pH 5, yet SFEVs induced subtle increases in total and progressive motility in sperm incubated with SFEVs at pH 7. Additional investigation of sperm motility kinematic parameters revealed that SFEVs significantly decreased beat cross frequency and increased distance straight line, linearity, straightness, straight line velocity, and wobble. SFEVs did not influence sperm capacitation status or the ability of sperm to undergo acrosomal exocytosis. Functional assessment of both high- and low-quality spermatozoa collected prior to liquefaction showed limited SFEV influence, with these vesicles inducing only subtle decreases in beat cross frequency in spermatozoa of both groups. These findings raise the prospect that, aside from subtle effects on sperm motility, the encapsulated SFEV cargo may be destined for physiological targets other than the male germline, notably the female reproductive tract. Lay Summary: A male's influence over the biological processes of pregnancy extends beyond the provision of sperm. Molecular signals present in the ejaculate can influence the likelihood of pregnancy and healthy pregnancy progression, but the identity and function of these signals remain unclear. In this study, we wanted to understand if nano-sized particles present in the male ejaculate, called seminal fluid extracellular vesicles, can assist sperm in traversing the female reproductive tract to access the egg. To explore this, we isolated seminal fluid extracellular vesicles from human semen and incubated them with sperm. Our data showed that seminal fluid extracellular vesicles act to transfer molecular information to sperm, but this resulted in only subtle changes to the movement of sperm.
Assuntos
Vesículas Extracelulares , Sêmen , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides , Humanos , Masculino , Vesículas Extracelulares/metabolismo , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Motilidade dos Espermatozoides/fisiologia , Capacitação Espermática/fisiologia , Sêmen/metabolismo , Sêmen/química , Reação Acrossômica/fisiologia , Glândulas Seminais/metabolismoRESUMO
In Brief: Aging in men is associated with diminished sperm quality and a higher incidence of altered fetal development and miscarriage in resultant pregnancies. This study in mice identifies a therapeutic compound that, when administered to aged males, improves sperm quality, subsequent embryo development and post-natal offspring health. Abstract: Aging in men is associated with diminished sperm quality and a higher incidence of altered fetal development and miscarriage in resultant pregnancies. We used a mouse model of advanced paternal age to characterize embryonic development in older male mice and tested whether pre-conception treatment with the mitochondrial activator BGP-15 improves reproductive outcomes in old males. Like older men, reproductively old male mice had higher levels of sperm DNA damage and delayed pre-implantation development, associated with a reduced fetal weight and placental weight. Analysis of neonatal outcomes of in vivo-conceived offspring found that pups sired by old males were smaller, had delayed locomotor development, and increased mortality. BGP-15 treatment for 5 days prior to conception reduced sperm DNA oxidation levels and improved on-time embryo development after IVF and pup survival. BGP-15 treatment for 3 weeks prior to conception improved on-time pre-implantation embryo development and fetal viability and increased fetal size in pregnancies sired by old males. These results validate that ageing negatively affects male fertility and offspring physiology and indicates that pre-conception treatment with BGP-15 has the potential to improve sperm quality as well as early embryo development and post-natal health.
Assuntos
Envelhecimento , Fertilidade , Espermatozoides , Animais , Masculino , Camundongos , Espermatozoides/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Gravidez , Desenvolvimento Embrionário/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Dano ao DNA , Análise do Sêmen , Desenvolvimento Fetal/efeitos dos fármacosRESUMO
Regulatory T (Treg) cells are essential for immune tolerance of embryo implantation, and insufficient Treg cells provokes early pregnancy loss. An abortion-prone mouse model was used to evaluate IL-2 complexed with JES6-1 anti-IL-2 antibody (IL-2/JES6-1) to boost uterine Treg cells and improve reproductive success. IL-2/JES6-1, but not IL-2/IgG, administered in periconception to CBA/J females mated with DBA/2 males elicited a greater than twofold increase in the proportion of CD4+ T cells expressing forkhead box P3 (FOXP3), and an increased ratio of FOXP3+ Treg cells/FOXP3- T conventional cells in the uterus and its draining lymph nodes at embryo implantation that was sustained into midgestation. An attenuated phenotype was evident in both thymic-derived and peripheral Treg cells with elevated cytotoxic T-lymphocyte antigen-4, CD25, and FOXP3 indicating improved suppressive function, as well as increased proliferative marker Ki-67. IL-2/JES6-1 treatment reduced fetal loss from 31% to 10%, accompanied by a 6% reduction in late gestation fetal weight, despite comparable placental size and architecture. Similar effects of IL-2/JES6-1 on Treg cells and fetal growth were seen in CBA/J females with healthy pregnancies sired by BALB/c males. These findings show that expanding the uterine Treg cell pool through targeting IL-2 signaling is a strategy worthy of further investigation for mitigating risk of immune-mediated fetal loss.
Assuntos
Aborto Espontâneo , Interleucina-2 , Camundongos Endogâmicos CBA , Linfócitos T Reguladores , Animais , Feminino , Linfócitos T Reguladores/imunologia , Interleucina-2/imunologia , Interleucina-2/metabolismo , Camundongos , Gravidez , Masculino , Aborto Espontâneo/imunologia , Camundongos Endogâmicos DBA , Fatores de Transcrição Forkhead/metabolismoRESUMO
Normal reproductive function and fertility is considered a "sixth vital sign" because disruptions to this sensitive physiological system can forewarn other health issues, including exposure to environmental toxicants. We found that female mice exhibited profound loss of embryos during pre-implantation and fetal development coincident with a change to the source of their drinking water. When female mice were provided with tap water from the building in which they were housed (Water 2), instead of tap water from a neighboring building which was their previous supply (Water 1), ovulated oocytes were degenerated or had impaired meiotic maturation, and failed to form embryos. The harmful effects of Water 2 exposure were not reversible even following a recovery period; however, carbon-filtration of Water 2 removed the toxic contaminant. Water composition analysis to identify the responsible toxicant(s) found that trace elements were present at expected levels and phthalates were undetectable. Per- and Poly-fluoroalkyl Substances (PFAS), a family of persistent organic pollutants were detected at â¼4â ng/L. To investigate further, female mice were given drinking water categorized by level of PFAS contamination (0.6â ng/L, 2.8â ng/L, or 4.4â ng/L) for 9 weeks. Compared to mice consuming purified MilliQ water, mice consuming PFAS-contaminated water had decreased oocyte quality, impaired embryogenesis and reduced cell numbers in blastocysts. PFAS concentration in the drinking water was negatively correlated with oocyte viability. Importantly, the levels of PFAS detected in the tap water are within current "safe level" guidelines, and further research is needed to determine whether PFAS are responsible for the observed reproductive toxicity. However, this research demonstrating that water deemed suitable for human consumption has detrimental effects on mammalian embryo development has important implications for public health and water quality policies.
RESUMO
The female reproductive tract accommodates and balances the unique immunological challenges of protection from sexually transmitted pathogens and tolerance of the fetus and placenta in pregnancy. Leukocytes in the female reproductive tract actively engage in extensive maternal adaptations that are imperative for embryo implantation, placental development, and fetal growth support. γδ T cells are abundant at many mucosal sites in the body, where they provide protection against pathogens and cancer, and have roles in tissue renewal and homeostasis. In this review, we summarize studies in humans and rodents showing that γδ T cells are prevalent in the female reproductive tract and fluctuate in response to hormone changes across the reproductive cycle. Emerging evidence points to a link between changes in their abundance and molecular repertoire in the uterus and pregnancy disorders including recurrent miscarriage and preterm birth. However, defining the precise functional role of female reproductive tract γδ T cells and understanding their physiological significance in reproduction and pregnancy have remained elusive. Here, we critically analyze whether reproductive tract γδ T cells could be active participants in reproductive events-or whether their principal function is immune defense, in which case they may compromise pregnancy success unless adequately regulated.
RESUMO
Clomiphene citrate is a common treatment for ovulation induction in subfertile women, but its use is associated with elevated risk of adverse perinatal outcomes and birth defects. To investigate the biological plausibility of a causal relationship, this study investigated the consequences in mice for fetal development and pregnancy outcome of periconception clomiphene citrate administration at doses approximating human exposures. A dose-dependent adverse effect of clomiphene citrate given twice in the 36 hours after mating was seen, with a moderate dose of 0.75â mg/kg sufficient to cause altered reproductive outcomes in 3 independent cohorts. Viable pregnancy was reduced by 30%, late gestation fetal weight was reduced by 16%, and â¼30% of fetuses exhibited delayed development and/or congenital abnormalities not seen in control dams, including defects of the lung, kidney, liver, eye, skin, limbs, and umbilicus. Clomiphene citrate also caused a 30-hour average delay in time of birth, and elevated rate of pup death in the early postnatal phase. In surviving offspring, growth trajectory tracking and body morphometry analysis at 20 weeks of age showed postweaning growth and development similar to controls. A dysregulated inflammatory response in the endometrium was observed and may contribute to the underlying pathophysiological mechanism. These results demonstrate that in utero exposure to clomiphene citrate during early pregnancy can compromise implantation and impact fetal growth and development, causing adverse perinatal outcomes. The findings raise the prospect of similar iatrogenic effects in women where clomiphene citrate may be present in the periconception phase unless its use is well-supervised.
Assuntos
Clomifeno , Clomifeno/efeitos adversos , Clomifeno/administração & dosagem , Animais , Feminino , Gravidez , Camundongos , Desenvolvimento Fetal/efeitos dos fármacos , Fármacos para a Fertilidade Feminina/efeitos adversos , Fármacos para a Fertilidade Feminina/administração & dosagem , Masculino , Resultado da Gravidez , Camundongos Endogâmicos C57BL , Morte Fetal , Indução da Ovulação/métodosRESUMO
Mammalian preimplantation embryos often contain chromosomal defects that arose in the first divisions after fertilization and affect a subpopulation of cells - an event known as mosaic aneuploidy. In this issue of the JCI, Chavli et al. report single-cell genomic sequencing data for rigorous evaluation of the incidence and degree of mosaic aneuploidy in healthy human in vitro fertilization (IVF) embryos. Remarkably, mosaic aneuploidy occurred in at least 80% of human blastocyst-stage embryos, with often less than 20% of cells showing defects. These findings confirm that mosaic aneuploidy is prevalent in human embryos, indicating that the process is a widespread event that rarely has clinical consequences. There are major implications for preimplantation genetic testing of aneuploidy (PGT-A), a test commonly used to screen and select IVF embryos for transfer. The application and benefit of this technology is controversial, and the findings provide more cause for caution on its use.
Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Testes Genéticos , Aneuploidia , Fertilização in vitro , MosaicismoRESUMO
Regulatory T (Treg) cell defects are implicated in disorders of embryo implantation and placental development, but the origins of Treg cell dysfunction are unknown. Here, we comprehensively analyzed the phenotypes and transcriptional profile of peripheral blood Treg cells in individuals with early pregnancy failure (EPF). Compared to fertile subjects, EPF subjects had 32% fewer total Treg cells and 54% fewer CD45RA+CCR7+ naive Treg cells among CD4+ T cells, an altered Treg cell phenotype with reduced transcription factor FOXP3 and suppressive marker CTLA4 expression, and lower Treg:Th1 and Treg:Th17 ratios. RNA sequencing demonstrated an aberrant gene expression profile, with upregulation of pro-inflammatory genes including CSF2, IL4, IL17A, IL21, and IFNG in EPF Treg cells. In silico analysis revealed 25% of the Treg cell dysregulated genes are targets of FOXP3. We conclude that EPF is associated with systemic Treg cell defects arising due to disrupted FOXP3 transcriptional control and loss of lineage fidelity.
RESUMO
BACKGROUND: Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS: We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS: Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION: Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.
Assuntos
Anti-Inflamatórios , Neuroproteção , Gravidez , Animais , Feminino , Humanos , EncéfaloRESUMO
BACKGROUND: Receptivity of the uterus is essential for embryo implantation and progression of mammalian pregnancy. Acquisition of receptivity involves major molecular and cellular changes in the endometrial lining of the uterus from a non-receptive state at ovulation, to a receptive state several days later. The precise molecular mechanisms underlying this transition and their upstream regulators remain to be fully characterized. Here, we aimed to generate a comprehensive profile of the endometrial transcriptome in the peri-ovulatory and peri-implantation states, to define the genes and gene pathways that are different between these states, and to identify new candidate upstream regulators of this transition, in the mouse. RESULTS: High throughput RNA-sequencing was utilized to identify genes and pathways expressed in the endometrium of female C57Bl/6 mice at estrus and on day 3.5 post-coitum (pc) after mating with BALB/c males (n = 3-4 biological replicates). Compared to the endometrium at estrus, 388 genes were considered differentially expressed in the endometrium on day 3.5 post-coitum. The transcriptional changes indicated substantial modulation of uterine immune and vascular systems during the pre-implantation phase, with the functional terms Angiogenesis, Chemotaxis, and Lymphangiogenesis predominating. Ingenuity Pathway Analysis software predicted the activation of several upstream regulators previously shown to be involved in the transition to receptivity including various cytokines, ovarian steroid hormones, prostaglandin E2, and vascular endothelial growth factor A. Our analysis also revealed four candidate upstream regulators that have not previously been implicated in the acquisition of uterine receptivity, with growth differentiation factor 2, lysine acetyltransferase 6 A, and N-6 adenine-specific DNA methyltransferase 1 predicted to be activated, and peptidylprolyl isomerase F predicted to be inhibited. CONCLUSIONS: This study confirms that the transcriptome of a receptive uterus is vastly different to the non-receptive uterus and identifies several genes, regulatory pathways, and upstream drivers not previously associated with implantation. The findings will inform further research to investigate the molecular mechanisms of uterine receptivity.
Assuntos
Transcriptoma , Fator A de Crescimento do Endotélio Vascular , Gravidez , Masculino , Feminino , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Endométrio/metabolismo , Implantação do Embrião/genética , Útero , Mamíferos/genéticaRESUMO
Progesterone (P4) is essential for embryo implantation, but the extent to which the pro-gestational effects of P4 depend on the maternal immune compartment is unknown. Here, we investigate whether regulatory T cells (Treg cells) act to mediate luteal phase P4 effects on uterine receptivity in mice. P4 antagonist RU486 administered to mice on days 0.5 and 2.5 postcoitum to model luteal phase P4 deficiency caused fewer CD4+Foxp3+ Treg cells and impaired Treg functional competence, along with dysfunctional uterine vascular remodeling and perturbed placental development in midgestation. These effects were linked with fetal loss and fetal growth restriction, accompanied by a Th1/CD8-skewed T cell profile. Adoptive transfer at implantation of Treg cells - but not conventional T cells - alleviated fetal loss and fetal growth restriction by mitigating adverse effects of reduced P4 signaling on uterine blood vessel remodeling and placental structure and by restoring maternal T cell imbalance. These findings demonstrate an essential role for Treg cells in mediating P4 effects at implantation and indicate that Treg cells are a sensitive and critical effector mechanism through which P4 drives uterine receptivity to support robust placental development and fetal growth.
Assuntos
Progesterona , Linfócitos T Reguladores , Humanos , Gravidez , Feminino , Animais , Camundongos , Progesterona/farmacologia , Placenta , Retardo do Crescimento Fetal , Implantação do Embrião/fisiologia , Desenvolvimento FetalRESUMO
OBJECTIVE: Seminal plasma cytokines are associated with fertility and reproductive health, but progressing their clinical utility is hampered by absence of reference data on concentration ranges of relevant cytokines in healthy men. We employed a systematic approach to assemble current evidence on the concentrations of immune regulatory cytokines present in seminal plasma (SP) of normozoospermic and/or fertile men and evaluated the impact of different platform methodologies for cytokine quantification. EVIDENCE REVIEW: A systematic literature search was performed utilising PubMed, Web of Science and Scopus. Databases were searched from inception until 30th June 2022 inclusive, using combinations of keywords pertaining to seminal fluid and cytokines, and was restricted to human participants. Original data with values reported as concentration of specific cytokines in SP of men clearly defined as fertile or normozoospermic were extracted from studies written in English. RESULTS: A total of 3769 publications were initially identified, of which 118 fulfilled the eligibility criteria for inclusion. A total of 51 individual cytokines are detectable in SP of healthy men. The number of studies reporting on each cytokine range from 1 to >20. The reported concentrations for many cytokines linked with fertility status, including IL6, CXCL8/IL8, and TNFA, are highly variable between published studies. This is associated with the different immunoassay methodologies utilised and may be exacerbated by a lack of validation of assays to ensure suitability for SP assessment. Due to the large variation between studies, accurate reference ranges for healthy men cannot be determined from the published data. CONCLUSIONS: The concentrations of cytokines and chemokines detected in SP is inconsistent and highly variable between studies and cohorts, limiting current capacity to define reference ranges for cytokine concentrations in fertile men. The lack of standardisation in methods used to process and store SP, and variation in platforms used to evaluate cytokine abundance, are factors contributing to the observed heterogeneity. To progress the clinical utility of SP cytokine analysis will require standardisation and validation of methodologies so that reference ranges for healthy fertile men can be defined.
Assuntos
Infertilidade Masculina , Sêmen , Masculino , Humanos , Citocinas , Fertilidade , Análise de VariânciaRESUMO
Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma-/-) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.
Assuntos
Proteínas Reguladoras de Apoptose , Placenta , Gravidez , Feminino , Humanos , Camundongos , Animais , Adolescente , Proteínas Reguladoras de Apoptose/metabolismo , Útero/metabolismo , Implantação do Embrião/fisiologia , PlacentaçãoRESUMO
The immunological surveillance factors controlling vulnerability of the female reproductive tract (FRT) to sexually transmitted viral infections are not well understood. Interferon-epsilon (IFNÉ) is a distinct, immunoregulatory type-I IFN that is constitutively expressed by FRT epithelium and is not induced by pathogens like other antiviral IFNs α, ß and λ. We show the necessity of IFNÉ for Zika Virus (ZIKV) protection by: increased susceptibility of IFNÉ-/- mice; their "rescue" by intravaginal recombinant IFNÉ treatment and blockade of protective endogenous IFNÉ by neutralising antibody. Complementary studies in human FRT cell lines showed IFNÉ had potent anti-ZIKV activity, associated with transcriptome responses similar to IFNλ but lacking the proinflammatory gene signature of IFNα. IFNÉ activated STAT1/2 pathways similar to IFNα and λ that were inhibited by ZIKV-encoded non-structural (NS) proteins, but not if IFNε exposure preceded infection. This scenario is provided by the constitutive expression of endogenous IFNε. However, the IFNÉ expression was not inhibited by ZIKV NS proteins despite their ability to antagonise the expression of IFNß or λ. Thus, the constitutive expression of IFNÉ provides cellular resistance to viral strategies of antagonism and maximises the antiviral activity of the FRT. These results show that the unique spatiotemporal properties of IFNε provides an innate immune surveillance network in the FRT that is a significant barrier to viral infection with important implications for prevention and therapy.
Assuntos
Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Camundongos , Antivirais/farmacologia , Genitália Feminina , Fatores Imunológicos , Interferon-alfa/farmacologia , Zika virus/genéticaRESUMO
OBJECTIVE: To evaluate the association of donor sex with transfusion-associated recipient immune responses in preterm newborns receiving unwashed and washed blood. DESIGN: A cohort study using data collected during the Effect of Washed versus Unwashed Packed Red Blood Cell Transfusion on Immune Responses in the Extremely Preterm Newborn randomised trial. SETTING: Participants were recruited from two South Australian hospitals between September 2015 and December 2020. PATIENTS: Preterm newborns (<29 weeks). INTERVENTIONS: Transfusion with unwashed and washed packed red blood cells (PRBCs) from either exclusively male or any female donor for the first three transfusions. MAIN OUTCOMES MEASURES: The primary outcome was the change from baseline in post-transfusion plasma cytokine concentrations, specifically interferon gamma, interleukin (IL)-1ß, IL-6, IL-8, IL-10, IL-12, IL-17A and tumour necrosis factor (TNF). RESULTS: In total, 153 newborns were evaluated. By the third transfusion, the magnitude of pretransfusion to post-transfusion change in cytokines between the groups differed for IL-6 (p=0.003), IL-12 (p=0.008), IL-17A (p=0.003) and TNF (p=0.007). On post hoc comparison, compared with the unwashed-any female donor group, IL-6 (p<0.05), IL-12 (p<0.05) and IL-17A (p<0.01) were lower in the washed-exclusively male donor group, and IL-6 (p<0.01), IL-12 (p<0.05) and TNF (p<0.01) were lower in the washed-any female donor group. CONCLUSION: These findings suggest that transfusion with unwashed PRBCs from female donors is associated with an increased recipient immune response, an effect that can be ameliorated with pretransfusion washing. Larger randomised controlled studies confirming this mechanistic link between donor sex and transfusion-associated morbidity are warranted. TRIAL REGISTRATION NUMBER: ACTRN12613000237785.
Assuntos
Interleucina-17 , Interleucina-6 , Humanos , Recém-Nascido , Masculino , Feminino , Estudos de Coortes , Austrália , Interleucina-12 , Eritrócitos , ImunidadeRESUMO
Pregnancy depends on a state of maternal immune tolerance mediated by CD4+ regulatory T (Treg) cells. Uterine Treg cells release anti-inflammatory factors, inhibit effector immunity, and support adaptation of the uterine vasculature to facilitate placental development. Insufficient Treg cells or inadequate functional competence is implicated in infertility and recurrent miscarriage, as well as pregnancy complications preeclampsia, fetal growth restriction, and preterm birth, which stem from placental insufficiency. In this review we address an emerging area of interest in pregnancy immunology-the significance of metabolic status in regulating the Treg cell expansion required for maternal-fetal tolerance. We describe how hyperglycemia and insulin resistance affect T cell responses to suppress generation of Treg cells, summarize data that implicate a role for altered glucose metabolism in impaired maternal-fetal tolerance, and explore the prospect of targeting dysregulated metabolism to rebalance the adaptive immune response in women experiencing reproductive disorders.
Assuntos
Placenta , Nascimento Prematuro , Feminino , Glucose/metabolismo , Humanos , Tolerância Imunológica , Recém-Nascido , Gravidez , Nascimento Prematuro/metabolismo , Linfócitos T ReguladoresRESUMO
Regulatory T (Treg) cells are a specialized CD4+ T cell subpopulation that are essential for immune homeostasis, immune tolerance, and protection against autoimmunity. There is evidence that sex-steroid hormones estrogen and progesterone modulate Treg cell abundance and phenotype in women. Since natural oscillations in these hormones are modified by hormonal contraceptives, we examined whether oral contraception (OC) use impacts Treg cells and related T cell populations. T cells were analyzed by multiparameter flow cytometry in peripheral blood collected across the menstrual cycle from healthy women either using OC or without hormonal contraception and from age-matched men. Compared to naturally cycling women, women using OC had fewer Treg cells and an altered Treg cell phenotype. Notably, Treg cells exhibiting a strongly suppressive phenotype, defined by high FOXP3, CD25, Helios, HLADR, CTLA4, and Ki67, comprised a lower proportion of total Treg cells, particularly in the early- and mid-cycle phases. The changes were moderate compared to more substantial differences in Treg cells between women and men, wherein women had fewer Treg cells-especially of the effector memory Treg cell subset-associated with more T helper type 1 (Th1) cells and CD8+ T cells and lower Treg:Th1 cell and Treg:CD8+ T cell ratios than men. These findings imply that OC can modulate the number and phenotype of peripheral blood Treg cells and raise the possibility that Treg cells contribute to the physiological changes and altered disease susceptibility linked with OC use.
Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Anticoncepção , Feminino , Fatores de Transcrição Forkhead/metabolismo , Hormônios/metabolismo , Humanos , Fenótipo , Linfócitos T Reguladores/metabolismoRESUMO
Immune cells are essential for endometrial receptivity to embryo implantation and early placental development. They exert tissue-remodeling and immune regulatory roles-acting to promote epithelial attachment competence, regulate the differentiation of decidual cells, remodel the uterine vasculature, control and resolve inflammatory activation, and suppress destructive immunity to paternally inherited alloantigens. From a biological perspective, the endometrial immune response exerts a form of "quality control"-it promotes implantation success when conditions are favorable but constrains receptivity when physiological circumstances are not ideal. Women with recurrent implantation failure and recurrent miscarriage may exhibit altered numbers or disturbed function of certain uterine immune cell populations-most notably uterine natural killer cells and regulatory T cells. Preclinical and animal studies indicate that deficiencies or aberrant activation states in these cells can be causal in the pathophysiological mechanisms of infertility. Immune cells are, therefore, targets for diagnostic evaluation and therapeutic intervention. However, current diagnostic tests are overly simplistic and have limited clinical utility. To be more informative, they need to account for the full complexity and reflect the range of perturbations that can occur in uterine immune cell phenotypes and networks. Moreover, safe and effective interventions to modulate these cells are in their infancy, and personalized approaches matched to specific diagnostic criteria will be needed. Here we summarize current biological understanding and identify knowledge gaps to be resolved before the promise of therapies to target the uterine immune response can be fully realized.
Assuntos
Aborto Habitual , Placenta , Aborto Habitual/diagnóstico , Animais , Implantação do Embrião/fisiologia , Endométrio/fisiologia , Feminino , Humanos , Gravidez , ÚteroRESUMO
Pregnancy complications including fetal growth restriction, preeclampsia, and preterm birth, as well as gestational diabetes, affect one in every four to five pregnancies. Accumulating evidence indicates that increased production of reactive oxygen species accompanies these complications. Given that reactive oxygen species are cell stress-inducing agents, they may have a causal role in disease pathophysiology, although the exact mechanisms by which they contribute to pregnancy complications are not completely understood. Since many environmental and lifestyle factors and exposures are known to modulate reactive oxygen species production, the exposome of pregnant women could contribute to increased generation of reactive oxygen species. The objective of this review is to provide a comprehensive overview of the endogenous and exogenous exposome factors that regulate reactive species in healthy and complicated pregnancies. We also provide a description of dietary interventions aimed at the reduction of reactive species in order to attenuate adverse pregnancy outcome. Dietary interventions in general hold minimal risk in pregnancy and could therefore be considered a promising therapeutic approach.