Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Obesity (Silver Spring) ; 32(4): 723-732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321231

RESUMO

OBJECTIVE: The pathological expansion of white adipose tissue (WAT) in obesity involves adipocyte hypertrophy accompanied by expansion of the collagen-rich pericellular extracellular matrix (ECM) and development of crown-like structures (CLS). Traditionally, WAT morphology is assessed through immunohistochemical analysis of WAT sections. However, manual analysis of large histological sections is time-consuming, and the available digital tools for analyzing adipocyte size and pericellular ECM are limited. To address this gap, the authors developed the Adipose Tissue Analysis Toolkit (ATAT), an ImageJ plugin facilitating analysis of adipocyte size, WAT ECM, and CLS. METHODS AND RESULTS: ATAT utilizes local and image-level differentials in pixel intensity to independently threshold image background, distinguishing adipocyte-free tissue without user input. It accurately captures adipocytes in histological sections stained with common dyes and automates the analysis of adipocyte cross-sectional area, total-field, and localized region-of-interest ECM. ATAT allows fully automated batch analysis of histological images using default or user-defined adipocyte detection parameters. CONCLUSIONS: ATAT provides several advantages over existing WAT image analysis tools, enabling high-throughput analyses of adipocyte-specific parameters and facilitating the assessment of ECM changes associated with WAT remodeling due to weight changes and other pathophysiological alterations that affect WAT function.


Assuntos
Adipócitos , Tecido Adiposo , Humanos , Adipócitos/patologia , Tecido Adiposo Branco , Obesidade , Matriz Extracelular
2.
Am J Reprod Immunol ; 90(4): e13773, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37766405

RESUMO

PROBLEM: Anovulatory infertility is commonly associated with hyperandrogenemia (elevated testosterone, T), insulin resistance, obesity, and white adipose tissue (WAT) dysfunction associated with adipocyte hypertrophy. However, whether hyperandrogenemia and adipocyte hypertrophy per se induce a proinflammatory response is unknown. METHOD OF STUDY: Young adult female rhesus macaques were exposed to an obesogenic Western-style diet (WSD) in the presence of elevated circulating testosterone (T+WSD) or a low-fat control diet with no exogenous T. Immune cells residing in visceral omental white adipose tissue (OM-WAT), corpus luteum and the contralateral ovary, endometrium, lymph nodes, bone marrow, and peripheral blood mononuclear cells were characterized by flow cytometry during the luteal phase of the reproductive cycle. RESULTS: Following one year of treatment, T+WSD animals became more insulin-resistant and exhibited increased body fat and adipocyte hypertrophy compared to controls. T+WSD treatment did not induce macrophage polarization toward a proinflammatory phenotype in the tissues examined. Additionally, T+WSD treatment did not affect TNFα production by bone marrow macrophages in response to toll-like receptor agonists. While the major lymphoid subsets were not significantly affected by T+WSD treatment, we observed a significant reduction in the frequency of effector memory CD8+ T-cells (Tem) in OM-WAT, but not in other tissues. Notably, OM-WAT Tem frequencies were negatively correlated with insulin resistance as assessed by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). CONCLUSION: This study shows that short-term T+WSD treatment induces weight gain, insulin resistance, and adipocyte hypertrophy, but does not have a significant effect on systemic and tissue-resident proinflammatory markers, suggesting that adipocyte hypertrophy and mild hyperandrogenemia alone are not sufficient to induce a proinflammatory response.


Assuntos
Hiperandrogenismo , Resistência à Insulina , Síndrome do Ovário Policístico , Humanos , Animais , Feminino , Macaca mulatta , Resistência à Insulina/fisiologia , Testosterona/farmacologia , Leucócitos Mononucleares , Hiperandrogenismo/complicações , Adipócitos/patologia , Hipertrofia/complicações , Dieta
3.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38318208

RESUMO

Objective: The pathological expansion of white adipose tissue (WAT) in obesity involves adipocyte hypertrophy accompanied by expansion of collagen-rich pericellular extracellular matrix (ECM) and the development of crown-like structures (CLS). Traditionally, WAT morphology is assessed through immunohistochemical analysis of WAT sections. However, manual analysis of large histological sections is time-consuming, and available digital tools for analyzing adipocyte size and pericellular ECM are limited. To address this gap, we developed the Adipose Tissue Analysis Toolkit (ATAT), an ImageJ plugin facilitating analysis of adipocyte size, WAT ECM and CLS. Methods and Results: ATAT utilizes local and image-level differentials in pixel intensity to independently threshold background, distinguishing adipocyte-free tissue without user input. It accurately captures adipocytes in histological sections stained with common dyes and automates the analysis of adipocyte cross-sectional area, total-field, and localized region-of-interest ECM. ATAT allows fully automated batch analysis of histological images using default or user-defined adipocyte detection parameters. Conclusions: ATAT provides several advantages over existing WAT image analysis tools, enabling high-throughput analyses of adipocyte-specific parameters and facilitating the assessment of ECM changes associated with WAT remodeling due to weight changes and other pathophysiological alterations that affect WAT function. Study Importance Questions: What is already known about this subject?: The manual analysis of large WAT histological sections is very time-consuming, while digital tools for the analysis of WAT are limited.What are the new findings in your manuscript?: - ATAT enables fully automated analysis of batches of histological images using either default or user-defined adipocyte detection parameters- ATAT allows high-throughput analyses of adipocyte-specific parameters and pericellular extracellular matrix- ATAT enables the assessment of fibrotic changes associated with WAT remodeling and crown-like structuresHow might your results change the direction of research or the focus of clinical practice?: - ATAT is designed to work with histological sections and digital images obtained using a slide scanner or a microscope.- This tool will help basic and clinical researchers to conduct automated analyses of adipose tissue histological sections.

4.
Stem Cell Reports ; 17(12): 2595-2609, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36332628

RESUMO

Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.


Assuntos
Dieta Ocidental , Células-Tronco , Feminino , Gravidez , Humanos , Camundongos , Animais , Macaca mulatta , Camundongos Endogâmicos NOD , Camundongos SCID , Dieta Ocidental/efeitos adversos
5.
Cell Rep ; 40(11): 111362, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103820

RESUMO

Obesity is associated with increased cancer incidence and progression. However, the relationship between adiposity and cancer remains poorly understood at the mechanistic level. Here, we report that adipocytes from tumor-invasive mammary fat undergo de-differentiation to fibroblast-like precursor cells during tumor progression and integrate into the tumor microenvironment. Single-cell sequencing reveals that these de-differentiated adipocytes lose their original identities and transform into multiple cell types, including myofibroblast- and macrophage-like cells, with their characteristic features involved in immune response, inflammation, and extracellular matrix remodeling. The de-differentiated cells are metabolically distinct from tumor-associated fibroblasts but exhibit comparable effects on tumor cell proliferation. Inducing de-differentiation by Xbp1s overexpression promotes tumor progression despite lower adiposity. In contrast, promoting lipid-storage capacity in adipocytes through MitoNEET overexpression curbs tumor growth despite greater adiposity. Collectively, the metabolic interplay between tumor cells and adipocytes induces adipocyte mesenchymal transition and contributes to reconfigure the stroma into a more tumor-friendly microenvironment.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Adipócitos/metabolismo , Animais , Neoplasias da Mama/patologia , Matriz Extracelular/metabolismo , Feminino , Humanos , Neoplasias Mamárias Animais/patologia , Microambiente Tumoral
6.
Diabetes ; 71(12): 2496-2512, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880782

RESUMO

Caveolin-1 (cav1) is an important structural and signaling component of plasma membrane invaginations called caveolae and is abundant in adipocytes. As previously reported, adipocyte-specific ablation of the cav1 gene (ad-cav1 knockout [KO] mouse) does not result in elimination of the protein, as cav1 protein traffics to adipocytes from neighboring endothelial cells. However, this mouse is a functional KO because adipocyte caveolar structures are depleted. Compared with controls, ad-cav1KO mice on a high-fat diet (HFD) display improved whole-body glucose clearance despite complete loss of glucose-stimulated insulin secretion, blunted insulin-stimulated AKT activation in metabolic tissues, and partial lipodystrophy. The cause is increased insulin-independent glucose uptake by white adipose tissue (AT) and reduced hepatic gluconeogenesis. Furthermore, HFD-fed ad-cav1KO mice display significant AT inflammation, fibrosis, mitochondrial dysfunction, and dysregulated lipid metabolism. The glucose clearance phenotype of the ad-cav1KO mice is at least partially mediated by AT small extracellular vesicles (AT-sEVs). Injection of control mice with AT-sEVs from ad-cav1KO mice phenocopies ad-cav1KO characteristics. Interestingly, AT-sEVs from ad-cav1KO mice propagate the phenotype of the AT to the liver. These data indicate that ad-cav1 is essential for healthy adaptation of the AT to overnutrition and prevents aberrant propagation of negative phenotypes to other organs by EVs.


Assuntos
Caveolina 1 , Vesículas Extracelulares , Insulina , Animais , Camundongos , Adipócitos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Dieta Hiperlipídica , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Camundongos Knockout
7.
Curr Protoc ; 1(11): e271, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34735045

RESUMO

Fluorescence-activated cell sorting enables separation and analysis of heterogeneous cell populations based on size, granularity, and fluorescence intensity. Cell sorting has been widely used for isolation of cells that are ∼10 to 25 µm in diameter. By contrast, cell sorting of unilocular adipocytes isolated from white adipose tissue imposes a significant technological challenge. The combination of their large size (up to 200 µm) and the fragile nature of lipid-laden adipocytes requires the use of specialized flow cytometers equipped with a large nozzle and capable of using low pressure to reduce shear forces during the cell sorting process. Furthermore, isolation of single adipocytes is rarely performed due to the lack of specialized cell sorters that can dispense single adipocytes into individual wells. Conducting cell sorting on single adipocytes would enable analyses of the cell-autonomous heterogeneity in nutrient uptake and metabolism observed in white adipose tissue. In this protocol, we describe single-cell sorting of rhesus macaque adipocytes labeled with fluorescent fatty acid and live-cell indicators using large-particle flow cytometry. This methodology represents a valuable resource for basic and translational studies aimed at understanding the development and function of adipocytes. © 2021 Wiley Periodicals LLC. Basic Protocol: Single-cell flow sorting of adipocytes.


Assuntos
Adipócitos , Tecido Adiposo Branco , Animais , Separação Celular , Citometria de Fluxo , Macaca mulatta
8.
Bone ; 133: 115248, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31972314

RESUMO

Recent developments in in situ microscopy have enabled unparalleled resolution of the architecture of the bone marrow (BM) niche for murine hematopoietic stem and progenitor cells (HSPCs). However, the extent to which these observations can be extrapolated to human BM remains unknown. In humans, adipose tissue occupies a significant portion of the BM medullary cavity, making quantitative immunofluorescent analysis difficult due to lipid-mediated light scattering. In this study, we employed optical clearing, confocal microscopy and nearest neighbor analysis to determine the spatial distribution of CD34+ HSPCs in the BM in a translationally relevant rhesus macaque model. Immunofluorescent analysis revealed that femoral BM adipocytes are associated with the branches of vascular sinusoids, with half of HSPCs localizing in close proximity of the nearest BM adipocyte. Immunofluorescent microscopy and flow cytometric analysis demonstrate that BM adipose tissue exists as a multicellular niche consisted of adipocytes, endothelial cells, granulocytes, and macrophages. Analysis of BM adipose tissue conditioned media using liquid chromatography-tandem mass spectrometry revealed the presence of multiple bioactive proteins involved in regulation of hematopoiesis, inflammation, and bone development, with many predicted to reside inside microvesicles. Pretreatment of purified HSPCs with BM adipose tissue conditioned media, comprising soluble and exosomal/microvesicle-derived factors, led to enhanced proliferation and an increase in granulocyte-monocyte differentiation potential ex vivo. Our work extends extensive studies in murine models, indicating that BM adipose tissue is a central paracrine regulator of hematopoiesis in nonhuman primates and possibly in humans.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Tecido Adiposo , Animais , Células da Medula Óssea , Células Endoteliais , Hematopoese , Células-Tronco Hematopoéticas , Macaca mulatta , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA