Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Front Toxicol ; 6: 1373003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694815

RESUMO

Objectives: This study combines two innovative mouse models in a major gene discovery project to assess the influence of host genetics on asbestos related disease (ARD). Conventional genetics studies provided evidence that some susceptibility to mesothelioma is genetic. However, the identification of host modifier genes, the roles they may play, and whether they contribute to disease susceptibility remain unknown. Here we report a study designed to rapidly identify genes associated with mesothelioma susceptibility by combining the Collaborative Cross (CC) resource with the well-characterised MexTAg mesothelioma mouse model. Methods: The CC is a powerful mouse resource that harnesses over 90% of common genetic variation in the mouse species, allowing rapid identification of genes mediating complex traits. MexTAg mice rapidly, uniformly, and predictably develop mesothelioma, but only after asbestos exposure. To assess the influence of host genetics on ARD, we crossed 72 genetically distinct CC mouse strains with MexTAg mice and exposed the resulting CC-MexTAg (CCMT) progeny to asbestos and monitored them for traits including overall survival, the time to ARD onset (latency), the time between ARD onset and euthanasia (disease progression) and ascites volume. We identified phenotype-specific modifier genes associated with these traits and we validated the role of human orthologues in asbestos-induced carcinogenesis using human mesothelioma datasets. Results: We generated 72 genetically distinct CCMT strains and exposed their progeny (2,562 in total) to asbestos. Reflecting the genetic diversity of the CC, there was considerable variation in overall survival and disease latency. Surprisingly, however, there was no variation in disease progression, demonstrating that host genetic factors do have a significant influence during disease latency but have a limited role once disease is established. Quantitative trait loci (QTL) affecting ARD survival/latency were identified on chromosomes 6, 12 and X. Of the 97-protein coding candidate modifier genes that spanned these QTL, eight genes (CPED1, ORS1, NDUFA1, HS1BP3, IL13RA1, LSM8, TES and TSPAN12) were found to significantly affect outcome in both CCMT and human mesothelioma datasets. Conclusion: Host genetic factors affect susceptibility to development of asbestos associated disease. However, following mesothelioma establishment, genetic variation in molecular or immunological mechanisms did not affect disease progression. Identification of multiple candidate modifier genes and their human homologues with known associations in other advanced stage or metastatic cancers highlights the complexity of ARD and may provide a pathway to identify novel therapeutic targets.

2.
Nat Rev Clin Oncol ; 21(1): 28-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907723

RESUMO

Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Genômica/métodos , Perfilação da Expressão Gênica , Transcriptoma , Imunoterapia , Microambiente Tumoral/genética
3.
Vaccines (Basel) ; 10(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35746559

RESUMO

During the current pandemic, the vast majority of COVID-19 patients experienced mild symptoms, but some had a potentially fatal aberrant hyperinflammatory immune reaction characterized by high levels of IL-6 and other cytokines. Modulation of this immune reaction has proven to be the only method of reducing mortality in severe and critical COVID-19. The anti-inflammatory drug baricitinib (Olumiant) has recently been strongly recommended by the WHO for use in COVID-19 patients because it reduces the risk of progressive disease and death. It is a Janus Kinase (JAK) 1/2 inhibitor approved for rheumatoid arthritis which was suggested in early 2020 as a treatment for COVID-19. In this review the AI-assisted identification of baricitinib, its antiviral and anti-inflammatory properties, and efficacy in clinical trials are discussed and compared with those of other immune modulators including glucocorticoids, IL-6 and IL-1 receptor blockers and other JAK inhibitors. Baricitinib inhibits both virus infection and cytokine signalling and is not only important for COVID-19 management but is "non-immunological", and so should remain effective if new SARS-CoV-2 variants escape immune control. The repurposing of baricitinib is an example of how advanced artificial intelligence (AI) can quickly identify new drug candidates that have clinical benefit in previously unsuspected therapeutic areas.

4.
Genome Med ; 14(1): 58, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637530

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. METHODS: We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. RESULTS: The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a 'hot' immune environment independent of the somatic mutations. CONCLUSIONS: We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Genômica , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Microambiente Tumoral/genética
5.
Front Pharmacol ; 13: 858557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431929

RESUMO

Asbestos-induced preclinical mouse models of mesothelioma produce tumors that are very similar to those that develop in humans and thus represent an ideal platform to study this rare, universally fatal tumor type. Our team and a number of other research groups have established such models as a stepping stone to new treatments, including chemotherapy, immunotherapy and other approaches that have been/are being translated into clinical trials. In some cases this work has led to changes in mesothelioma treatment practice and over the last 30 years these models and studies have led to trials which have improved the response rate in mesothelioma from less than 10% to over 50%. Mouse models have had a vital role in that improvement and will continue to play a key role in the future success of mesothelioma immunotherapy. In this review we focus only on these original inbred mouse models, the large number of preclinical studies conducted using them and their contribution to current and future clinical therapy for mesothelioma.

6.
Oncoimmunology ; 11(1): 2038403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186441

RESUMO

The process of tumorigenesis leaves a series of indelible genetic changes in tumor cells, that when expressed, have the potential to be tumor-specific immune targets. Neoantigen vaccines that capitalize on this potential immunogenicity have shown efficacy in preclinical models and have now entered clinical trials. Here we discuss the status of personalized neoantigen vaccines and the current major challenges to this nascent field. In particular, we focus on the types of antigens that can be targeted by vaccination and on the role that preexisting immunosuppression, and in particular T-cell exhaustion, will play in the development of effective cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias/genética , Vacinas Anticâncer/uso terapêutico , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Vacinação
8.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34285073

RESUMO

Neoantigen-specific T cells are strongly implicated as being critical for effective immune checkpoint blockade treatment (ICB) (e.g., anti-PD-1 and anti-CTLA-4) and are being targeted for vaccination-based therapies. However, ICB treatments show uneven responses between patients, and neoantigen vaccination efficiency has yet to be established. Here, we characterize neoantigen-specific CD8+ T cells in a tumor that is resistant to ICB and neoantigen vaccination. Leveraging the use of mass cytometry combined with multiplex major histocompatibility complex (MHC) class I tetramer staining, we screened and identified tumor neoantigen-specific CD8+ T cells in the Lewis Lung carcinoma (LLC) tumor model (mRiok1). We observed an expansion of mRiok1-specific CD8+ tumor-infiltrating lymphocytes (TILs) after ICB targeting PD-1 or CTLA-4 with no sign of tumor regression. The expanded neoantigen-specific CD8+ TILs remained phenotypically and functionally exhausted but displayed cytotoxic characteristics. When combining both ICB treatments, mRiok1-specific CD8+ TILs showed a stem-like phenotype and a higher capacity to produce cytokines, but tumors did not show signs of regression. Furthermore, combining both ICB treatments with neoantigen vaccination did not induce tumor regression either despite neoantigen-specific CD8+ TIL expansion. Overall, this work provides a model for studying neoantigens in an immunotherapy nonresponder model. We showed that a robust neoantigen-specific T-cell response in the LLC tumor model could fail in tumor response to ICB, which will have important implications in designing future immunotherapeutic strategies.


Assuntos
Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Resistencia a Medicamentos Antineoplásicos , Linfócitos do Interstício Tumoral/imunologia , Animais , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
10.
Cancer Immunol Immunother ; 70(11): 3249-3258, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33835222

RESUMO

Surgical resection of cancer remains the frontline therapy for millions of patients annually, but post-operative recurrence is common, with a relapse rate of around 45% for non-small cell lung cancer. The tumour draining lymph nodes (dLN) are resected at the time of surgery for staging purposes, and this cannot be a null event for patient survival and future response to immune checkpoint blockade treatment. This project investigates cancer surgery, lymphadenectomy, onset of metastatic disease, and response to immunotherapy in a novel model that closely reflects the clinical setting. In a murine metastatic lung cancer model, primary subcutaneous tumours were resected with associated dLNs remaining intact, completely resected or partially resected. Median survival after surgery was significantly shorter with complete dLN resection at the time of surgery (49 days (95%CI)) compared to when lymph nodes remained intact (> 88 days; p < 0.05). Survival was partially restored with incomplete lymph node resection and CD8 T cell dependent. Treatment with aCTLA4 whilst effective against the primary tumour was ineffective for metastatic lung disease. Conversely, aPD-1/aCD40 treatment was effective in both the primary and metastatic disease settings and restored the detrimental effects of complete dLN resection on survival. In this pre-clinical lung metastatic disease model that closely reflects the clinical setting, we observe decreased frequency of survival after complete lymphadenectomy, which was ameliorated with partial lymph node removal or with early administration of aPD-1/aCD40 therapy. These findings have direct relevance to surgical lymph node resection and adjuvant immunotherapy in lung cancer, and perhaps other cancer, patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Excisão de Linfonodo , Metástase Neoplásica/imunologia , Animais , Quimioterapia Adjuvante/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/patologia
11.
Expert Rev Anticancer Ther ; 21(5): 465-474, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33509005

RESUMO

Background: Single-agent cyclophosphamide can deplete regulatory T-cells (Treg). We aimed to determine optimal dosing and scheduling of oral cyclophosphamide, alongside pemetrexed-based chemotherapy, to deplete Treg in mesothelioma or non-small-cell lung cancer patients.Methods: 31 Patients received pemetrexed ± cisplatin or carboplatin on day 1 of a 21-day cycle (maximum 6 cycles). From cycle two, patients received cyclophosphamide, 50 mg/day, with intrapatient escalation to maximum 100/150 mg/day alternately. Immunological changes were examined by flow cytometry. Primary endpoint was Treg proportion of CD4+ T-cells, with doses tailored to target Treg nadir <4%.Results: Reduction in Treg proportion was observed on day 8 of all cycles, and was not augmented by cyclophosphamide. Few patients achieved the <4% Treg target. Treg proliferation reached nadir one week after chemotherapy, and peaked on day 1 of the subsequent cycle. Efficacy parameters were similar to chemotherapy alone. Seventeen percent of patients ceased cyclophosphamide due to toxicity.Conclusions: Specific Treg depletion to the degree seen with single-agent cyclophosphamide was not observed during pemetrexed-based chemotherapy. This study highlights the poor evidence basis for use of cyclophosphamide as an immunotherapeutic in combination with chemotherapy, and the importance of detailed flow cytometry studies.Trial registration: Clinical trial registration: www.anzctr.org.au identifier is ACTRN12609000260224.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino , Ciclofosfamida/administração & dosagem , Ciclofosfamida/toxicidade , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Pemetrexede , Platina/uso terapêutico , Linfócitos T Reguladores
12.
Cancer Epidemiol Biomarkers Prev ; 29(10): 1973-1982, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732250

RESUMO

BACKGROUND: We have verified a mass spectrometry (MS)-based targeted proteomics signature for the detection of malignant pleural mesothelioma (MPM) from the blood. METHODS: A seven-peptide biomarker MPM signature by targeted proteomics in serum was identified in a previous independent study. Here, we have verified the predictive accuracy of a reduced version of that signature, now composed of six-peptide biomarkers. We have applied liquid chromatography-selected reaction monitoring (LC-SRM), also known as multiple-reaction monitoring (MRM), for the investigation of 402 serum samples from 213 patients with MPM and 189 cancer-free asbestos-exposed donors from the United States, Australia, and Europe. RESULTS: Each of the biomarkers composing the signature was independently informative, with no apparent functional or physical relation to each other. The multiplexing possibility offered by MS proteomics allowed their integration into a single signature with a higher discriminating capacity than that of the single biomarkers alone. The strategy allowed in this way to increase their potential utility for clinical decisions. The signature discriminated patients with MPM and asbestos-exposed donors with AUC of 0.738. For early-stage MPM, AUC was 0.765. This signature was also prognostic, and Kaplan-Meier analysis showed a significant difference between high- and low-risk groups with an HR of 1.659 (95% CI, 1.075-2.562; P = 0.021). CONCLUSIONS: Targeted proteomics allowed the development of a multianalyte signature with diagnostic and prognostic potential for MPM from the blood. IMPACT: The proteomic signature represents an additional diagnostic approach for informing clinical decisions for patients at risk for MPM.


Assuntos
Espectrometria de Massas/métodos , Mesotelioma Maligno/genética , Neoplasias Pleurais/genética , Proteômica/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Adv Sci (Weinh) ; 7(9): 1903410, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32382482

RESUMO

The evolutionary dynamics of tumor-associated neoantigens carry information about drug sensitivity and resistance to the immune checkpoint blockade (ICB). However, the spectrum of somatic mutations is highly heterogeneous among patients, making it difficult to track neoantigens by circulating tumor DNA (ctDNA) sequencing using "one size fits all" commercial gene panels. Thus, individually customized panels (ICPs) are needed to track neoantigen evolution comprehensively during ICB treatment. Dominant neoantigens are predicted from whole exome sequencing data for treatment-naïve tumor tissues. Panels targeting predicted neoantigens are used for personalized ctDNA sequencing. Analyzing ten patients with non-small cell lung cancer, ICPs are effective for tracking most predicted dominant neoantigens (80-100%) in serial peripheral blood samples, and to detect substantially more genes (18-30) than the capacity of current commercial gene panels. A more than 50% decrease in ctDNA concentration after eight weeks of ICB administration is associated with favorable progression-free survival. Furthermore, at the individual level, the magnitude of the early ctDNA response is correlated with the subsequent change in tumor burden. The application of ICP-based ctDNA sequencing is expected to improve the understanding of ICB-driven tumor evolution and to provide personalized management strategies that optimize the clinical benefits of immunotherapies.

14.
Oncoimmunology ; 9(1): 1684713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002298

RESUMO

Neoantigens present unique and specific targets for personalized cancer immunotherapy strategies. Given the low mutational burden yet immunotherapy responsiveness of malignant mesothelioma (MM) when compared to other carcinogen-induced malignancies, identifying candidate neoantigens and T cells that recognize them has been a challenge. We used pleural effusions to gain access to MM tumor cells as well as immune cells in order to characterize the tumor-immune interface in MM. We characterized the landscape of potential neoantigens from SNVs identified in 27 MM patients and performed whole transcriptome sequencing of cell populations from 18 patient-matched pleural effusions. IFNγ ELISpot was performed to detect a CD8+ T cell responses to predicted neoantigens in one patient. We detected a median of 68 (range 7-258) predicted neoantigens across the samples. Wild-type non-binding to mutant binding predicted neoantigens increased risk of death in a model adjusting for age, sex, smoking status, histology and treatment (HR: 33.22, CI: 2.55-433.02, p = .007). Gene expression analysis indicated a dynamic immune environment within the pleural effusions. TCR clonotypes increased with predicted neoantigen burden. A strong activated CD8+ T-cell response was identified for a predicted neoantigen produced by a spontaneous mutation in the ROBO3 gene. Despite the challenges associated with the identification of bonafide neoantigens, there is growing evidence that these molecular changes can provide an actionable target for personalized therapeutics in difficult to treat cancers. Our findings support the existence of candidate neoantigens in MM despite the low mutation burden of the tumor, and may present improved treatment opportunities for patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Mesotelioma Maligno , Antígenos de Neoplasias/genética , Humanos , Imunoterapia , Mesotelioma Maligno/imunologia , Receptores de Superfície Celular
15.
Oncoimmunology ; 9(1): 1684714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002299

RESUMO

Immune checkpoint blockade (ICPB) is a powerfully effective cancer therapy in some patients. Tumor neo-antigens are likely main targets for attack but it is not clear which and how many tumor mutations in individual cancers are actually antigenic, with or without ICPB therapy and their role as neo-antigen vaccines or as predictors of ICPB responses. To examine this, we interrogated the immune response to tumor neo-antigens in a murine model in which the tumor is induced by a natural human carcinogen (i.e. asbestos) and mimics its human counterpart (i.e. mesothelioma). We identified and screened 33 candidate neo-antigens, and found T cell responses against one candidate in tumor-bearing animals, mutant UQCRC2. Interestingly, we found a high degree of inter-animal variation in the magnitude of neo-antigen responses in otherwise identical mice. ICPB therapy with Cytotoxic T-lymphocyte-associated protein (CTLA-4) and α-glucocorticoid-induced TNFR family related gene (GITR) in doses that induced tumor regression, increased the magnitude of responses and unmasked functional T cell responses against another neo-antigen, UNC45a. Importantly, the magnitude of the pre-treatment draining lymph node (dLN) response to UNC45a closely corresponded to ICPB therapy outcomes. Surprisingly however, boosting pre-treatment UNC45a-specific T cell numbers did not improve response rates to ICPB. These observations suggest a novel biomarker approach to the clinical prediction of ICPB response and have important implications for the development of neo-antigen vaccines.


Assuntos
Vacinas Anticâncer , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias , Animais , Antígenos de Neoplasias/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfonodos , Camundongos , Neoplasias/genética , Neoplasias/terapia , Linfócitos T Citotóxicos
16.
Biochem Biophys Res Commun ; 510(2): 198-204, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30685089

RESUMO

Malignant mesothelioma is an aggressive fibrous tumor, predominantly of the pleura, with a very poor prognosis. Cell-matrix interactions are recognized important determinants of tumor growth and invasiveness but the role of the extracellular matrix in mesothelioma is unknown. Mesothelioma cells synthesize collagen as well as transforming growth factor-beta (TGF-ß), a key regulator of collagen production. This study examined the effect of inhibiting collagen production on mesothelioma cell proliferation in vitro and tumor growth in vivo. Collagen production by mesothelioma cells was inhibited by incubating cells in vitro with the proline analogue thiaproline (thiazolidine-4-carboxylic acid) or by oral administration of thiaproline in a murine tumor model. Cell cytotoxicity was measured using neutral red uptake and lactate dehydrogenase assays. Proliferation was measured by tritiated thymidine incorporation, and inflammatory cell influx, proliferation, apoptosis and angiogenesis in tumors examined by immunohistochemical labelling. Tumor size was determined by tumor weight and collagen production was measured by HPLC. Thiaproline at non-toxic doses significantly reduced basal and TGF-ß-induced collagen production by over 50% and cell proliferation by over 65%. In vivo thiaproline administration inhibited tumor growth at 10 days, decreasing the median tumor weight by 80%. The mean concentration of collagen was 50% lower in the thiaproline-treated tumors compared with the controls. There were no significant differences in vasculature or inflammatory cell infiltration but apoptosis was increased in thiaproline treated tumors at day 10. In conclusion, these observations strongly support a role for collagen in mesothelioma growth and establish the potential for inhibitors of collagen synthesis in mesothelioma treatment.


Assuntos
Colágeno/biossíntese , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurais/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Colágeno/antagonistas & inibidores , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Humanos , Inflamação , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Camundongos Endogâmicos CBA , Neoplasias Pleurais/patologia , Tiazolidinas/farmacologia , Fator de Crescimento Transformador beta/metabolismo
17.
Expert Rev Respir Med ; 13(2): 181-192, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30596292

RESUMO

INTRODUCTION: Immunotherapy has long been considered a potential therapy for malignant mesothelioma and is currently being pursued as such. Some of the early phase clinical trials involving immunomodulators have demonstrated encouraging results and numerous clinical trials are underway to further investigate this treatment approach in various treatment settings and larger patient cohorts. Areas covered: This review summarizes the current and emerging clinical evidence for checkpoint blockade and other immunotherapeutic strategies in mesothelioma. The mesothelioma tumor immune microenvironment and mutational landscape are also discussed, including their impact on treatment strategies. We also provide an evaluation of the current evidence for neoantigen targeted personalized immunotherapy. Expert opinion: Immune checkpoint inhibitors work by unleashing the host immune response against probable neoantigens. Despite impressive activity in a small subset of patients and the potential for prolonged responses, most patients experience treatment failure. Neoantigen vaccines provide a potential complementary therapeutic strategy by increasing the immunogenic antigen load, which can lead to an increased tumor specific immune response. Further research is needed explore this treatment option in mesothelioma and technological advances are required to translate this concept into clinical practice.


Assuntos
Vacinas Anticâncer , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Humanos , Mesotelioma Maligno , Medicina de Precisão/métodos
18.
BMC Res Notes ; 11(1): 864, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518402

RESUMO

OBJECTIVE: Pleural effusion (PE) is a common feature of malignant pleural mesothelioma. These effusions typically contain lymphocytes and malignant cells. We postulated that the PE would be a source of lymphocytes for analysis of tumor immune milieu. The aim of this study was to compare the phenotype and T cell receptor usage of pleural effusion T cells with paired concurrently drawn peripheral blood lymphocytes. We used multi-parameter flow cytometry and high-throughput T cell receptor sequencing to analyse peripheral blood and pleural effusion mononuclear cells. RESULTS: Both CD8+ and CD4+ T cells from effusion showed increased expression of T cell inhibitory receptors PD-1, LAG-3 and Tim-3 compared to blood. Comprehensive T cell receptor sequencing on one of the patients showed a discordant distribution of clonotypes in the antigen-experienced (PD-1+) compartment between effusion and blood, suggesting an enrichment of antigen specific clonotypes in the effusion, with potential as an immunological response biomarker.


Assuntos
Neoplasias Pulmonares/imunologia , Mesotelioma/imunologia , Derrame Pleural/imunologia , Receptores de Superfície Celular/metabolismo , Linfócitos T/imunologia , Idoso , Idoso de 80 Anos ou mais , Humanos , Neoplasias Pulmonares/sangue , Mesotelioma/sangue , Mesotelioma Maligno , Pessoa de Meia-Idade , Derrame Pleural/sangue , Receptores de Antígenos de Linfócitos T/metabolismo
19.
Oncoimmunology ; 7(10): e1494111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288361

RESUMO

Mesothelioma is an aggressive asbestos induced cancer with extremely poor prognosis and limited treatment options. Immune checkpoint blockade (ICPB) has demonstrated effective therapy in melanoma and is now being applied to other cancers, including mesothelioma. However, the efficacy of ICPB and which immune checkpoint combinations constitute the best therapeutic option for mesothelioma have yet to be fully elucidated. Here, we used our well characterised mesothelioma tumour model to investigate the efficacy of different ICBP treatments to generate effective therapy for mesothelioma. We show that tumour resident regulatory T cell co-express high levels of CTLA-4, OX40 and GITR relative to T effector subsets and that these receptors are co-expressed on a large proportion of cells. Targeting any of CTLA-4, OX40 or GITR individually generated effective responses against mesothelioma. Furthermore, the combination of αCTLA-4 and αOX40 was synergistic, with an increase in complete tumour regressions from 20% to 80%. Other combinations did not synergise to enhance treatment outcomes. Finally, an early pattern in T cell response was predictive of response, with activation status and ICP receptor expression profile of T effector cells harvested from tumour and dLN correlating with response to immunotherapy. Taken together, these data demonstrate that combination ICPB can work synergistically to induce strong, durable immunity against mesothelioma in an animal model.

20.
J Thorac Oncol ; 13(11): 1655-1667, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266660

RESUMO

On March 28- 29, 2017, the National Cancer Institute (NCI) Thoracic Malignacy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation convened the NCI-International Association for the Study of Lung Cancer- Mesothelioma Applied Research Foundation Mesothelioma Clinical Trials Planning Meeting in Bethesda, Maryland. The goal of the meeting was to bring together lead academicians, clinicians, scientists, and the U.S. Food and Drug Administration to focus on the development of clinical trials for patients in whom malignant pleural mesothelioma has been diagnosed. In light of the discovery of new cancer targets affecting the clinical development of novel agents and immunotherapies in malignant mesothelioma, the objective of this meeting was to assemble a consensus on at least two or three practice-changing multimodality clinical trials to be conducted through NCI's National Clinical Trials Network.


Assuntos
Neoplasias Pulmonares/terapia , Mesotelioma/terapia , Consenso , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , National Cancer Institute (U.S.) , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA