Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3845, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714749

RESUMO

Harnessing electronic excitations involving coherent coupling to bosonic modes is essential for the design and control of emergent phenomena in quantum materials. In situations where charge carriers induce a lattice distortion due to the electron-phonon interaction, the conducting states get "dressed", which leads to the formation of polaronic quasiparticles. The exploration of polaronic effects on low-energy excitations is in its infancy in two-dimensional materials. Here, we present the discovery of an interlayer plasmon polaron in heterostructures composed of graphene on top of single-layer WS2. By using micro-focused angle-resolved photoemission spectroscopy during in situ doping of the top graphene layer, we observe a strong quasiparticle peak accompanied by several carrier density-dependent shake-off replicas around the single-layer WS2 conduction band minimum. Our results are explained by an effective many-body model in terms of a coupling between single-layer WS2 conduction electrons and an interlayer plasmon mode. It is important to take into account the presence of such interlayer collective modes, as they have profound consequences for the electronic and optical properties of heterostructures that are routinely explored in many device architectures involving 2D transition metal dichalcogenides.

2.
Adv Mater ; 36(7): e2309777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992676

RESUMO

The layered insulator hexagonal boron nitride (hBN) is a critical substrate that brings out the exceptional intrinsic properties of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). In this work, the authors demonstrate how hBN slabs tuned to the correct thickness act as optical waveguides, enabling direct optical coupling of light emission from encapsulated layers into waveguide modes. Molybdenum selenide (MoSe2 ) and tungsten selenide (WSe2 ) are integrated within hBN-based waveguides and demonstrate direct coupling of photoluminescence emitted by in-plane and out-of-plane transition dipoles (bright and dark excitons) to slab waveguide modes. Fourier plane imaging of waveguided photoluminescence from MoSe2 demonstrates that dry etched hBN edges are an effective out-coupler of waveguided light without the need for oil-immersion optics. Gated photoluminescence of WSe2 demonstrates the ability of hBN waveguides to collect light emitted by out-of-plane dark excitons.Numerical simulations explore the parameters of dipole placement and slab thickness, elucidating the critical design parameters and serving as a guide for novel devices implementing hBN slab waveguides. The results provide a direct route for waveguide-based interrogation of layered materials, as well as a way to integrate layered materials into future photonic devices at arbitrary positions whilst maintaining their intrinsic properties.

3.
Nano Lett ; 23(7): 2792-2799, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010816

RESUMO

Engineering the transition metal dichalcogenide (TMD)-metal interface is critical for the development of two-dimensional semiconductor devices. By directly probing the electronic structures of WS2-Au and WSe2-Au interfaces with high spatial resolution, we delineate nanoscale heterogeneities in the composite systems that give rise to local Schottky barrier height modulations. Photoelectron spectroscopy reveals large variations (>100 meV) in TMD work function and binding energies for the occupied electronic states. Characterization of the composite systems with electron backscatter diffraction and scanning tunneling microscopy leads us to attribute these heterogeneities to differing crystallite orientations in the Au contact, suggesting an inherent role of the metal microstructure in contact formation. We then leverage our understanding to develop straightforward Au processing techniques to form TMD-Au interfaces with reduced heterogeneity. Our findings illustrate the sensitivity of TMDs' electronic properties to metal contact microstructure and the viability of tuning the interface through contact engineering.

4.
ACS Nano ; 16(11): 19346-19353, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36260344

RESUMO

While heterostructures are ubiquitous tools enabling new physics and device functionalities, the palette of available materials has never been richer. Combinations of two emerging material classes, two-dimensional materials and topological materials, are particularly promising because of the wide range of possible permutations that are easily accessible. Individually, both graphene and Pb1-xSnxTe (PST) are widely investigated for spintronic applications because graphene's high carrier mobility and PST's topologically protected surface states are attractive platforms for spin transport. Here, we combine monolayer graphene with PST and demonstrate a hybrid system with properties enhanced relative to the constituent parts. Using magnetotransport measurements, we find carrier mobilities up to 20 000 cm2/(V s) and a magnetoresistance approaching 100%, greater than either material prior to stacking. We also establish that there are two distinct transport channels and determine a lower bound on the spin relaxation time of 4.5 ps. The results can be explained using the polar catastrophe model, whereby a high mobility interface state results from a reconfiguration of charge due to a polar/nonpolar interface interaction. Our results suggest that proximity induced interface states with hybrid properties can be added to the still growing list of behaviors in these materials.

5.
ACS Nano ; 15(11): 18060-18070, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34623816

RESUMO

There is an intensive effort to control the nature of attractive interactions between ultrathin semiconductors and metals and to understand its impact on the electronic properties at the junction. Here, we present a photoelectron spectroscopy study on the interface between WS2 films and gold, with a focus on the occupied electronic states near the Brillouin zone center (i.e., the Γ point). To delineate the spectra of WS2 supported on crystalline Au from the suspended WS2, we employ a microscopy approach and a tailored sample structure, in which the WS2/Au junction forms a semi-epitaxial relationship and is adjacent to suspended WS2 regions. The photoelectron spectra, as a function of WS2 thickness, display the expected splitting of the highest occupied states at the Γ point. In multilayer WS2, we discovered variations in the electronic states that spatially align with the crystalline grains of underlying Au. Corroborated by density functional theory calculations, we attribute the electronic structure variations to stacking variations within the WS2 films. We propose that strong interactions exerted by Au grains cause slippage of the interfacing WS2 layer with respect to the rest of the WS2 film. Our findings illustrate that the electronic properties of transition metal dichalcogenides, and more generally 2D layered materials, are physically altered by the interactions with the interfacing materials, in addition to the electron screening and defects that have been widely considered.

6.
Nat Commun ; 12(1): 3267, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075055

RESUMO

Two-dimensional (2D) materials offer unique opportunities in engineering the ultrafast spatiotemporal response of composite nanomechanical structures. In this work, we report on high frequency, high quality factor (Q) 2D acoustic cavities operating in the 50-600 GHz frequency (f) range with f × Q up to 1 × 1014. Monolayer steps and material interfaces expand cavity functionality, as demonstrated by building adjacent cavities that are isolated or strongly-coupled, as well as a frequency comb generator in MoS2/h-BN systems. Energy dissipation measurements in 2D cavities are compared with attenuation derived from phonon-phonon scattering rates calculated using a fully microscopic ab initio approach. Phonon lifetime calculations extended to low frequencies (<1 THz) and combined with sound propagation analysis in ultrathin plates provide a framework for designing acoustic cavities that approach their fundamental performance limit. These results provide a pathway for developing platforms employing phonon-based signal processing and for exploring the quantum nature of phonons.

7.
ACS Nano ; 15(3): 5459-5466, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705102

RESUMO

As the need for ever greater transistor density increases, the commensurate decrease in device size approaches the atomic limit, leading to increased energy loss and leakage currents, reducing energy efficiencies. Alternative state variables, such as electronic spin rather than electronic charge, have the potential to enable more energy-efficient and higher performance devices. These spintronic devices require materials capable of efficiently harnessing the electron spin. Here we show robust spin transport in Cd3As2 films up to room temperature. We demonstrate a nonlocal spin valve switch from this material, as well as inverse spin Hall effect measurements yielding spin Hall angles as high as θSH = 1.5 and spin diffusion lengths of 10-40 µm. Long spin-coherence lengths with efficient charge-to-spin conversion rates and coherent spin transport up to room temperature, as we show here in Cd3As2, are enabling steps toward realizing actual spintronic devices.

8.
Nano Lett ; 20(11): 8312-8318, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079555

RESUMO

Near-infrared-to-visible second harmonic generation from air-stable two-dimensional polar gallium and indium metals is described. The photonic properties of 2D metals, including the largest second-order susceptibilities reported for metals (approaching 10 nm/V), are determined by the atomic-level structure and bonding of two-to-three-atom-thick crystalline films. The bond character evolved from covalent to metallic over a few atomic layers, changing the out-of-plane metal-metal bond distances by approximately ten percent (0.2 Å), resulting in symmetry breaking and an axial electrostatic dipole that mediated the large nonlinear response. Two different orientations of the crystalline metal atoms, corresponding to lateral displacements <2 Å, persisted in separate micrometer-scale terraces to generate distinct harmonic polarizations. This strong atomic-level structure-property interplay suggests metal photonic properties can be controlled with atomic precision.

9.
Adv Mater ; 32(31): e2001656, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529706

RESUMO

The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue toward engineering the properties of quantum materials. Twisted bilayer graphene is a key material in this regard because the superlattice produced by the rotated graphene layers introduces a van Hove singularity and flat bands near the Fermi energy that cause the emergence of numerous correlated phases, including superconductivity. Direct demonstration of electrostatic control of the superlattice bands over a wide energy range has, so far, been critically missing. This work examines the effect of electrical doping on the electronic band structure of twisted bilayer graphene using a back-gated device architecture for angle-resolved photoemission measurements with a nano-focused light spot. A twist angle of 12.2° is selected such that the superlattice Brillouin zone is sufficiently large to enable identification of van Hove singularities and flat band segments in momentum space. The doping dependence of these features is extracted over an energy range of 0.4 eV, expanding the combinations of twist angle and doping where they can be placed at the Fermi energy and thereby induce new correlated electronic phases in twisted bilayer graphene.

10.
Sci Adv ; 6(14): eaay6104, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32284971

RESUMO

Stacking two-dimensional (2D) van der Waals materials with different interlayer atomic registry in a heterobilayer causes the formation of a long-range periodic superlattice that may bestow the heterostructure with properties such as new quantum fractal states or superconductivity. Recent optical measurements of transition metal dichalcogenide (TMD) heterobilayers have revealed the presence of hybridized interlayer electron-hole pair excitations at energies defined by the superlattice potential. The corresponding quasiparticle band structures, so-called minibands, have remained elusive, and no such features have been reported for heterobilayers composed of a TMD and another type of 2D material. We introduce a new x-ray capillary technology for performing microfocused angle-resolved photoemission spectroscopy with a spatial resolution of ~1 µm, and directly observe minibands at certain twist angles in mini Brillouin zones (mBZs). We discuss their origin in terms of initial and final state effects by analyzing their dispersion in distinct mBZs.

11.
Nat Commun ; 11(1): 5, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911592

RESUMO

Here we report how two-dimensional crystal (2DC) overlayers influence the recrystallization of relatively thick metal films and the subsequent synergetic benefits this provides for coupling surface plasmon-polaritons (SPPs) to photon emission in 2D semiconductors. We show that annealing 2DC/Au films on SiO2 results in a reverse epitaxial process where initially nanocrystalline Au films gain texture, crystallographically orient with the 2D crystal overlayer, and form an oriented porous metallic network (OPEN) structure in which the 2DC can suspend above or coat the inside of the metal pores. Both laser excitation and exciton recombination in the 2DC semiconductor launch propagating SPPs in the OPEN film. Energy in-/out- coupling occurs at metal pore sites, alleviating the need for dielectric spacers between the metal and 2DC layer. At low temperatures, single-photon emitters (SPEs) are present across an OPEN-WSe2 film, and we demonstrate remote SPP-mediated excitation of SPEs at a distance of 17 µm.

12.
ACS Appl Mater Interfaces ; 11(22): 19793-19798, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31045352

RESUMO

Two-photon lithography allows writing of arbitrary nanoarchitectures in photopolymers. This design flexibility opens almost limitless possibilities for biological studies, but the acrylate-based polymers frequently used do not allow for adhesion and growth of some types of cells. Indeed, we found that lithographically defined structures made from OrmoComp do not support E18 murine cortical neurons. We reacted OrmoComp structures with several diamines, thereby rendering the surfaces directly permissive for neuron attachment and growth by presenting a surface coating similar to the traditional cell biology coating achieved with poly-d-lysine (PDL) and laminin. However, in contrast to PDL-laminin coatings that cover the entire surface, the amine-terminated OrmoComp structures are orthogonally modified in deference to the surrounding glass or plastic substrate, adding yet another design element for advanced biological studies.


Assuntos
Diaminas/química , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Células Cultivadas , Polilisina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
13.
ACS Appl Mater Interfaces ; 11(17): 15913-15921, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964277

RESUMO

Two-dimensional (2D) heterostructures are more than a sum of the parent 2D materials, but are also a product of the interlayer coupling, which can induce new properties. In this paper, we present a method to tune the interlayer coupling in Bi2Se3/MoS2 2D heterostructures by regulating the oxygen presence in the atmosphere, while applying laser or thermal energy. Our data suggest that the interlayer coupling is tuned through the diffusive intercalation and deintercalation of oxygen molecules. When one layer of Bi2Se3 is grown on monolayer MoS2, an influential interlayer coupling is formed, which quenches the signature photoluminescence (PL) peaks. However, thermally treating in the presence of oxygen disrupts the interlayer coupling, facilitating the emergence of the MoS2 PL peak. Our density functional theory calculations predict that intercalated oxygen increases the interlayer separation ∼17%, disrupting the interlayer coupling and inducing the layers to behave more electronically independent. The interlayer coupling can then be restored by thermally treating in N2 or Ar, where the peaks will requench. Hence, this is an interesting oxygen-induced switching between "non-radiative" and "radiative" exciton recombination. This switching can also be accomplished locally, controllably, and reversibly using a low-power focused laser, while changing the environment from pure N2 to air. This allows for the interlayer coupling to be precisely manipulated with submicron spatial resolution, facilitating site-programmable 2D light-emitting pixels whose emission intensity could be precisely varied by a factor exceeding 200×. Our results show that these atomically thin 2D heterostructures may be excellent candidates for oxygen sensing.

14.
Sci Rep ; 8(1): 2006, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386524

RESUMO

By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene's layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36-129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measured work function of 4.4 eV for graphene is consistent with doping levels on the order of 1012cm-2. We find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm-1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene's Fermi energy in the 'high' doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.

15.
Langmuir ; 33(48): 13749-13756, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29120637

RESUMO

We show that dehydrogenation of hydrogenated graphene proceeds much more slowly for bilayer systems than for single layer systems. We observe that an underlayer of either pristine or hydrogenated graphene will protect an overlayer of hydrogenated graphene against a number of chemical oxidants, thermal dehydrogenation, and degradation in an ambient environment over extended periods of time. Chemical protection depends on the ease of oxidant intercalation, with good intercalants such as Br2 demonstrating much higher reactivity than poor intercalants such as 1,2-dichloro-4,5-dicyanonbenzoquinone (DDQ). Additionally, the rate of dehydrogenation of hydrogenated graphene at 300 °C in H2/Ar was reduced by a factor of roughly 10 in the presence of a protective underlayer of graphene or hydrogenated graphene. Finally, the slow dehydrogenation of hydrogenated graphene in air at room temperature, which is normally apparent after a week, could be completely eliminated in samples with protective underlayers over the course of 39 days. Such protection will be critical for ensuring the long-term stability of devices made from functionalized graphene.

16.
ACS Nano ; 11(5): 4745-4752, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28463478

RESUMO

Using graphene nanomechanical resonators we demonstrate the extent to which the mechanical properties of multilayer graphene films are controllable, in real time, through introduction and rearrangement of defects. We show both static and re-entrant (cyclical) changes in the tensile stress using a combination of ion implantation, chemical functionalization, and thermal treatment. While the dramatic increase in static tensile stress achievable through laser annealing can be of importance for various MEMS applications, we view the direct observation of a time-variable stress as even more significant. We find that defect-rich films exhibit a slow relaxation component of the tensile stress that remains in the resonator long after the laser exposure is finished (trelax ≈ 100 s ≫ tcooling), analogous to a wind-up toy. We attribute this persistent component of the time-variable stress to a set of metastable, multivacancy structures formed during the laser anneal. Our results indicate that significant stress fields generated by multivacancies, in combination with their finite lifetime, could make them a powerful and flexible tool in nanomechanics.

17.
Nanotechnology ; 28(29): 295701, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28557804

RESUMO

Many applications of graphene can benefit from the enhanced mechanical robustness of graphene-based components. We report how the stiffness of vertical graphene (VG) sheets is affected by the introduction of defects and fluorination, both separately and combined. The defects were created using a high-energy ion beam while fluorination was performed in a XeF2 etching system. After ion bombardment alone, the average effective reduced modulus (E r), equal to ∼4.9 MPa for the as-grown VG sheets, approximately doubled to ∼10.0 MPa, while fluorination alone almost quadrupled it to ∼18.4 MPa. The maximum average E r of ∼32.4 MPa was achieved by repeatedly applying fluorination and ion bombardment. This increase can be explained by the formation of covalent bonds between the VG sheets due to ion bombardment, as well as the conversion from sp2 to sp3 and increased corrugation due to fluorination.

18.
ACS Appl Mater Interfaces ; 9(1): 677-683, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27977931

RESUMO

Chemically modified graphenes (CMGs) offer a means to tune a wide variety of graphene's exceptional properties. Critically, CMGs can be transferred onto a variety of substrates, thereby imparting functionalities to those substrates that would not be obtainable through conventional functionalization. One such application of CMGs is enabling and controlling the subsequent growth of inorganic thin films. In the current study, we demonstrated that CMGs enhance the growth of inorganic films on inert surfaces with poor growth properties. Fluorinated graphene transferred onto polyethylene enabled the dense and homogeneous deposition of a cadmium sulfide (CdS) film grown via chemical bath deposition. We showed that the coverage of the CdS film can be controlled by the degree of fluorination from less than 20% to complete coverage of the film. The approach can also be applied to other technologically important materials such as ZnO. Finally, we demonstrated that electron beam-generated plasma in a SF6-containing background could pattern fluorine onto a graphene/PE sample to selectively grow CdS films on the fluorinated region. Therefore, CMG coatings can tailor the surface properties of polymers and control the growth of inorganic thin films on polymers for the development of flexible electronics.

19.
ACS Nano ; 10(3): 3714-22, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26910346

RESUMO

We investigate hyperthermal ion implantation (HyTII) as a means for substitutionally doping layered materials such as graphene. In particular, this systematic study characterizes the efficacy of substitutional N-doping of graphene using HyTII over an N(+) energy range of 25-100 eV. Scanning tunneling microscopy results establish the incorporation of N substituents into the graphene lattice during HyTII processing. We illustrate the differences in evolution of the characteristic Raman peaks following incremental doses of N(+). We use the ratios of the integrated D and D' peaks, I(D)/I(D') to assess the N(+) energy-dependent doping efficacy, which shows a strong correlation with previously reported molecular dynamics (MD) simulation results and a peak doping efficiency regime ranging between approximately 30 and 50 eV. We also demonstrate the inherent monolayer depth control of the HyTII process, thereby establishing a unique advantage over other less-specific methods for doping. We achieve this by implementing twisted bilayer graphene (TBG), with one layer of isotopically enriched (13)C and one layer of natural (12)C graphene, and modify only the top layer of the TBG sample. By assessing the effects of N-HyTII processing, we uncover dose-dependent shifts in the transfer characteristics consistent with electron doping and we find dose-dependent electronic localization that manifests in low-temperature magnetotransport measurements.

20.
Nano Lett ; 16(2): 1455-61, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26784372

RESUMO

Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA