Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(11): 1335-1353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485451

RESUMO

Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.


Assuntos
Imunidade Inata , Inflamassomos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Humanos , Animais , Epitélio/imunologia , Epitélio/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Homeostase/imunologia
2.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37642996

RESUMO

Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by Pseudomonas aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects exotoxin A (EXOA), a ribotoxin released by P. aeruginosa type 2 secretion system (T2SS), during chronic infection. Mechanistically, EXOA-driven eukaryotic elongation factor 2 (EEF2) ribosylation and covalent inactivation promote ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, diphtheria toxin and cholix toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, cystic fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.


Assuntos
Fibrose Cística , Eucariotos , Humanos , Fator 2 de Elongação de Peptídeos , Inflamassomos , Citoplasma , Proteínas NLR
3.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37642997

RESUMO

The ZAKα-driven ribotoxic stress response (RSR) is activated by ribosome stalling and/or collisions. Recent work demonstrates that RSR also plays a role in innate immunity by activating the human NLRP1 inflammasome. Here, we report that ZAKα and NLRP1 sense bacterial exotoxins that target ribosome elongation factors. One such toxin, diphtheria toxin (DT), the causative agent for human diphtheria, triggers RSR-dependent inflammasome activation in primary human keratinocytes. This process requires iron-mediated DT production in the bacteria, as well as diphthamide synthesis and ZAKα/p38-driven NLRP1 phosphorylation in host cells. NLRP1 deletion abrogates IL-1ß and IL-18 secretion by DT-intoxicated keratinocytes, while ZAKα deletion or inhibition additionally limits both pyroptotic and inflammasome-independent non-pyroptotic cell death. Consequently, pharmacologic inhibition of ZAKα is more effective than caspase-1 inhibition at protecting the epidermal barrier in a 3D skin model of cutaneous diphtheria. In summary, these findings implicate ZAKα-driven RSR and the NLRP1 inflammasome in antibacterial immunity and might explain certain aspects of diphtheria pathogenesis.


Assuntos
Toxina Diftérica , Difteria , Humanos , Toxina Diftérica/toxicidade , Inflamassomos , Piroptose , Imunidade Inata , Proteínas NLR
4.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594856

RESUMO

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Células Epiteliais , Inflamassomos , Proteínas NLR , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Caspase 3/metabolismo , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Proteínas NLR/genética , Proteínas NLR/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
5.
Emerg Microbes Infect ; 10(1): 2326-2339, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34821529

RESUMO

ABSTRACTMelioidosis is a serious infectious disease endemic in Southeast Asia, Northern Australia and has been increasingly reported in other tropical and subtropical regions in the world. Percutaneous inoculation through cuts and wounds on the skin is one of the major modes of natural transmission. Despite cuts in skin being a major route of entry, very little is known about how the causative bacterium Burkholderia pseudomallei initiates an infection at the skin and the disease manifestation at the skin known as cutaneous melioidosis. One key issue is the lack of suitable and relevant infection models. Employing an in vitro 2D keratinocyte cell culture, a 3D skin equivalent fibroblast-keratinocyte co-culture and ex vivo organ culture from human skin, we developed infection models utilizing surrogate model organism Burkholderia thailandensis to investigate Burkholderia-skin interactions. Collectively, these models show that the bacterial infection was largely limited at the wound's edge. Infection impedes wound closure, triggers inflammasome activation and cellular extrusion in the keratinocytes as a potential way to control bacterial infectious load at the skin. However, extensive infection over time could result in the epidermal layer being sloughed off, potentially contributing to formation of skin lesions.


Assuntos
Burkholderia pseudomallei/fisiologia , Burkholderia/fisiologia , Epiderme/microbiologia , Inflamassomos/metabolismo , Queratinócitos/microbiologia , Melioidose/microbiologia , Pele/microbiologia , Ferimentos e Lesões/microbiologia , Células Cultivadas , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Melioidose/metabolismo , Melioidose/patologia , Modelos Biológicos , Pele/metabolismo , Pele/patologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
6.
Adv Drug Deliv Rev ; 132: 270-295, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30055210

RESUMO

Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.


Assuntos
Bioimpressão , Impressão Tridimensional , Pele/citologia , Materiais Biomiméticos/química , Humanos , Engenharia Tecidual
7.
J Invest Dermatol ; 138(2): 291-300, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28964717

RESUMO

Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease.


Assuntos
Hipopigmentação/genética , Ceratodermia Palmar e Plantar/genética , Melaninas/biossíntese , Melanócitos/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Biópsia , Cisteína/genética , Análise Mutacional de DNA , Feminino , Fibroblastos , Mutação em Linhagem Germinativa , Células HEK293 , Homozigoto , Humanos , Hipopigmentação/diagnóstico , Hipopigmentação/patologia , Queratinócitos/metabolismo , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/patologia , Masculino , Linhagem , Diester Fosfórico Hidrolases/metabolismo , Cultura Primária de Células , Pirofosfatases/metabolismo , Índice de Gravidade de Doença , Pele/citologia , Pele/patologia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA