RESUMO
Expression of the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) correlates with tumor progression and metastasis in many tumor types. However, the impact and mechanism of action by which MALAT1 promotes metastatic disease remain elusive. Here, we used CRISPR activation (CRISPRa) to overexpress MALAT1/Malat1 in patient-derived lung adenocarcinoma (LUAD) cell lines and in the autochthonous K-ras/p53 LUAD mouse model. Malat1 overexpression was sufficient to promote the progression of LUAD to metastatic disease in mice. Overexpression of MALAT1/Malat1 enhanced cell mobility and promoted the recruitment of protumorigenic macrophages to the tumor microenvironment through paracrine secretion of CCL2/Ccl2. Ccl2 up-regulation was the result of increased global chromatin accessibility upon Malat1 overexpression. Macrophage depletion and Ccl2 blockade counteracted the effects of Malat1 overexpression. These data demonstrate that a single lncRNA can drive LUAD metastasis through reprogramming of the tumor microenvironment.
Assuntos
Adenocarcinoma de Pulmão , Quimiocina CCL2 , Neoplasias Pulmonares , Metástase Neoplásica , RNA Longo não Codificante , Microambiente Tumoral , RNA Longo não Codificante/genética , Microambiente Tumoral/imunologia , Animais , Camundongos , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Quimiocina CCL2/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/imunologia , Inflamação/imunologia , Inflamação/genética , Macrófagos/imunologiaRESUMO
The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.
RESUMO
The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation, which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy-resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth. SIGNIFICANCE: Alternate strategies harnessing anticancer innate immunity are required for lung cancers with poor response rates to T cell-based immunotherapies. This study identifies a targetable, mutually supportive, metabolic relationship between macrophages and transformed epithelium, which is exploited by tumors to obtain metabolic and immunologic support to sustain proliferation and oncogenic signaling.
RESUMO
Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.
Assuntos
Neoplasias Pulmonares , Animais , Humanos , Montagem e Desmontagem da Cromatina , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Cromatina , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Mutação , Mamíferos/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genéticaRESUMO
Immunotherapy resistance in non-small cell lung cancer (NSCLC) may be mediated by an immunosuppressive microenvironment, which can be shaped by the mutational landscape of the tumor. Here, we observed genetic alterations in the PTEN/PI3K/AKT/mTOR pathway and/or loss of PTEN expression in >25% of patients with NSCLC, with higher frequency in lung squamous carcinomas (LUSC). Patients with PTEN-low tumors had higher levels of PD-L1 and PD-L2 and showed worse progression-free survival when treated with immunotherapy. Development of a Pten-null LUSC mouse model revealed that tumors with PTEN loss were refractory to antiprogrammed cell death protein 1 (anti-PD-1), highly metastatic and fibrotic, and secreted TGFß/CXCL10 to promote conversion of CD4+ lymphocytes into regulatory T cells (Treg). Human and mouse PTEN-low tumors were enriched in Tregs and expressed higher levels of immunosuppressive genes. Importantly, treatment of mice bearing Pten-null tumors with TLR agonists and anti-TGFß antibody aimed to alter this immunosuppressive microenvironment and led to tumor rejection and immunologic memory in 100% of mice. These results demonstrate that lack of PTEN causes immunotherapy resistance in LUSCs by establishing an immunosuppressive tumor microenvironment that can be reversed therapeutically. SIGNIFICANCE: PTEN loss leads to the development of an immunosuppressive microenvironment in lung cancer that confers resistance to anti-PD-1 therapy, which can be overcome by targeting PTEN loss-mediated immunosuppression.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , PTEN Fosfo-Hidrolase , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Microambiente Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêuticoRESUMO
The limited efficacy of currently approved immunotherapies in EGFR-mutant lung adenocarcinoma (LUAD) underscores the need to better understand mechanisms governing local immunosuppression. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophages (TA-AM) to proliferate and support tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases T cell effector functions. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how such cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.
RESUMO
Metastasis is the main cause of cancer deaths but the molecular events leading to metastatic dissemination remain incompletely understood. Despite reports linking aberrant expression of long noncoding RNAs (lncRNAs) with increased metastatic incidence , in vivo evidence establishing driver roles for lncRNAs in metastatic progression is lacking. Here, we report that overexpression of the metastasis-associated lncRNA Malat1 (metastasis-associated lung adenocarcinoma transcript 1) in the autochthonous K-ras/p53 mouse model of lung adenocarcinoma (LUAD) is sufficient to drive cancer progression and metastatic dissemination. We show that increased expression of endogenous Malat1 RNA cooperates with p53 loss to promote widespread LUAD progression to a poorly differentiated, invasive, and metastatic disease. Mechanistically, we observe that Malat1 overexpression leads to the inappropriate transcription and paracrine secretion of the inflammatory cytokine, Ccl2, to augment the mobility of tumor and stromal cells in vitro and to trigger inflammatory responses in the tumor microenvironment in vivo . Notably, Ccl2 blockade fully reverses cellular and organismal phenotypes of Malat1 overexpression. We propose that Malat1 overexpression in advanced tumors activates Ccl2 signaling to reprogram the tumor microenvironment to an inflammatory and pro-metastatic state.
RESUMO
Lessons learned from the rapid deployment of vaccines during the COVID-19 pandemic are reinvigorating the cancer vaccine field. Using delivery platforms including mRNA and synthetic long peptides, recent clinical trials have demonstrated that cancer vaccines are safe, feasible, and can be associated with the generation of antigen-specific memory T cells and, in some cases, durable clinical responses. Despite these advances, fundamental questions remain regarding the optimal delivery platforms and antigen targets to use in cancer vaccines. Ongoing and future studies that harness advances in the identification of novel sources of antigens, the prediction of immunogenic antigens, and the use of single-cell technologies to profile antigen-specific T cells will hopefully reveal correlates with clinical outcomes and provide a mechanistic basis for future progress.
Assuntos
COVID-19 , Vacinas Anticâncer , Neoplasias , COVID-19/prevenção & controle , Humanos , Neoplasias/terapia , Pandemias , RNA Mensageiro/genéticaRESUMO
Conditional ablation of defined cell populations in vivo can be achieved using genetically engineered mice in which the human diphtheria toxin (DT) receptor (DTR) is placed under control of a murine tissue-specific promotor, such that delivery of DT selectively ablates cells expressing this high-affinity human DTR; cells expressing only the endogenous low-affinity mouse DTR are assumed to be unaffected. Surprisingly, we found that systemic administration of DT induced rapid regression of murine lung adenocarcinomas that express human mutant EGFR in the absence of a transgenic allele containing human DTR. DT enzymatic activity was required for tumor regression, and mutant EGFR-expressing tumor cells were the primary target of DT toxicity. In FVB mice, EGFR-mutant tumors upregulated expression of HBEGF, which is the DTR in mice and humans. HBEGF blockade with the enzymatically inactive DT mutant CRM197 partially abrogated tumor regression induced by DT. These results suggest that elevated expression of murine HBEGF, i.e. the low-affinity DTR, confers sensitivity to DT in EGFR-mutant tumors, demonstrating a biological effect of DT in mice lacking transgenic DTR alleles and highlighting a unique vulnerability of EGFR-mutant lung cancers.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Animais , Toxina Diftérica/metabolismo , Toxina Diftérica/toxicidade , Receptores ErbB/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Neoplasias Pulmonares/genética , Camundongos , Receptores de Superfície Celular/metabolismoRESUMO
Patient-derived xenografts are a useful tool in cancer immunology, as they allow researchers to study human cancers in vivo when starting with a relatively small amount of human tumor tissue. These models make it possible to study tumor cell-intrinsic changes that occur in response to external stimuli including cytokines like interferon gamma (IFNγ) that are important for effective anti-tumor immune responses. IFNγ responsiveness can be measured by assessing surface expression of MHC class I on tumor cells, the molecule on which tumor antigens are presented to cytotoxic T cells in the tumor microenvironment. Low levels of MHC class I and lack of responsiveness have been associated with resistance to T-cell directed therapies like immune checkpoint inhibitors. In this chapter, we present a protocol for an assay to screen patient-derived xenografts for their responsiveness to IFNγ. The results of this assay can be used as a starting point for uncovering cancer cell-intrinsic mechanisms of resistance to immunotherapies in patient tumors.
Assuntos
Testes Imunológicos de Citotoxicidade/métodos , Imunoterapia , Interferon gama/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Neoplasias/terapia , Animais , Antígenos de Neoplasias , Linhagem Celular Tumoral , Humanos , Interferon gama/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) like erlotinib are effective for treating patients with EGFR mutant lung cancer; however, drug resistance inevitably emerges. Approaches to combine immunotherapies and targeted therapies to overcome or delay drug resistance have been hindered by limited knowledge of the effect of erlotinib on tumor-infiltrating immune cells. METHODS: Using mouse models, we studied the immunological profile of mutant EGFR-driven lung tumors before and after erlotinib treatment. RESULTS: We found that erlotinib triggered the recruitment of inflammatory T cells into the lungs and increased maturation of alveolar macrophages. Interestingly, this phenotype could be recapitulated by tumor regression mediated by deprivation of the EGFR oncogene indicating that tumor regression alone was sufficient for these immunostimulatory effects. We also found that further efforts to boost the function and abundance of inflammatory cells, by combining erlotinib treatment with anti-PD-1 and/or a CD40 agonist, did not improve survival in an EGFR-driven mouse model. CONCLUSIONS: Our findings lay the foundation for understanding the effects of TKIs on the tumor microenvironment and highlight the importance of investigating targeted and immuno-therapy combination strategies to treat EGFR mutant lung cancer.
Assuntos
Antineoplásicos/uso terapêutico , Receptores ErbB/genética , Receptores ErbB/imunologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Camundongos Transgênicos , Mutação , Oncogenes , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologiaRESUMO
Senescence is an important p53-controlled tumor suppressor program that not only opposes the proliferation of cancer cells but also promotes their immune-mediated clearance in certain contexts. In hepatocellular cancer, p53 induction promotes an innate immune cell-mediated clearance of senescent cells wherein natural killer (NK) cells seem to play the primary sentinel role. Whether NK cells also surveil cancer cells in other tumor types when p53 is activated to promote a senescence response is unknown. To identify the role that NK and other innate immune cell types have on the surveillance and destruction of lung adenocarcinoma cells, we developed an orthotopic transplantation model where p53 gene function could be restored to induce senescence after successful engraftment of tumor cells in the mouse lung. Contrary to precedent, we found that NK cells actually limited the efficient clearance of tumor cells from the mouse lung after p53 restoration. Instead, activation of p53 induced the infiltration of monocytes, neutrophils, and interstitial macrophages. Loss of NK cells further promoted expansion of these inflammatory cell types and tumor clearance after p53 restoration. These observations suggest that NK cell responses to p53 activation in lung adenocarcinoma is distinct from those found in other tumor types and that diverse innate immune cell populations may play context-dependent roles during tumor immune surveillance. Further, our data provide an impetus to understand the broader mechanisms that regulate cancer cell destruction by multiple cell types of the innate immune system and distinct cancer contexts.
RESUMO
Synthetic biological tools that enable precise regulation of gene function within in vivo systems have enormous potential to discern gene function in diverse physiological settings. Here we report the development and characterization of a synthetic gene switch that, when targeted in the mouse germline, enables conditional inactivation, reports gene expression and allows inducible restoration of the targeted gene. Gene inactivation and reporter expression is achieved through Cre-mediated stable inversion of an integrated gene-trap reporter, whereas inducible gene restoration is afforded by Flp-dependent deletion of the inverted gene trap. We validate our approach by targeting the p53 and Rb genes and establishing cell line and in vivo cancer model systems, to study the impact of p53 or Rb inactivation and restoration. We term this allele system XTR, to denote each of the allelic states and the associated expression patterns of the targeted gene: eXpressed (XTR), Trapped (TR) and Restored (R).
Assuntos
Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genes do Retinoblastoma , Genes Sintéticos/genética , Genes p53 , Integrases/metabolismo , Neoplasias Experimentais/genética , Alelos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Eletroporação , Embrião de Mamíferos , Células Epiteliais , Fibroblastos , Genes Reporter , Mutação em Linhagem Germinativa , Camundongos , Reação em Cadeia da PolimeraseRESUMO
We investigated whether TCRs restricted to the more ubiquitously expressed MHC class I molecules could be used to redirect human regulatory T cells (Tregs). Using a series of HLA-A2-restricted TCRs that recognize the same peptide-MHC class I complex (pMHC) with affinities varying up to 3500 fold, we observed that TCR affinity had no effect on the ability of the introduced TCRs to confer potent Ag-specific suppressive activity. Surprisingly, we found a naturally occurring, low-affinity MHC class I-restricted TCR specific for an NY-ESO-1 epitope that was unable to redirect a functional CD4 T-effector cell response could confer potent antigen-specific suppressive activity when expressed in Tregs and severely impair the expansion of highly functional HIV-1(GAG)-specific CD8 T cells expressing a high-affinity TCR. This suppressive activity was only observed when both Ags were presented by the same cell, and no suppression was observed when the target Ags were put in distinct cells. These studies underscore the clinical utility of using MHC class I-restricted TCRs to endow Tregs with specificity to control autoimmune disease and highlight the conditions in which this approach would have most therapeutic benefit.