Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4307, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262029

RESUMO

It is challenging for conventional top-down lithography to fabricate reproducible devices very close to atomic dimensions, whereas identical molecules and very similar nanoparticles can be made bottom-up in large quantities, and can be self-assembled on surfaces. The challenge is to fabricate electrical contacts to many such small objects at the same time, so that nanocrystals and molecules can be incorporated into conventional integrated circuits. Here, we report a scalable method for contacting a self-assembled monolayer of nanoparticles with a single layer of graphene. This produces single-electron effects, in the form of a Coulomb staircase, with a yield of 87 ± 13% in device areas ranging from < 800 nm2 to 16 µm2, containing up to 650,000 nanoparticles. Our technique offers scalable assembly of ultra-high densities of functional particles or molecules that could be used in electronic integrated circuits, as memories, switches, sensors or thermoelectric generators.

2.
Nanoscale ; 13(24): 10829-10836, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114577

RESUMO

Managing thermal transport in nanostructures became a major challenge in the development of active microelectronic, optoelectronic and thermoelectric devices, stalling the famous Moore's law of clock speed increase of microprocessors for more than a decade. To find the solution to this and linked problems, one needs to quantify the ability of these nanostructures to conduct heat with adequate precision, nanoscale resolution, and, essentially, for the internal layers buried in the 3D structure of modern semiconductor devices. Existing thermoreflectance measurements and "hot wire" 3ω methods cannot be effectively used at lateral dimensions of a layer below a micrometre; moreover, they are sensitive mainly to the surface layers of a relatively high thickness of above 100 nm. Scanning thermal microscopy (SThM), while providing the required lateral resolution, provides mainly qualitative data of the layer conductance due to undefined tip-surface and interlayer contact resistances. In this study, we used cross-sectional SThM (xSThM), a new method combining scanning probe microscopy compatible Ar-ion beam exit nano-cross-sectioning (BEXP) and SThM, to quantify thermal conductance in complex multilayer nanostructures and to measure local thermal conductivity of oxide and semiconductor materials, such as SiO2, SiGex and GeSny. By using the new method that provides 10 nm thickness and few tens of nm lateral resolution, we pinpoint crystalline defects in SiGe/GeSn optoelectronic materials by measuring nanoscale thermal transport and quantifying thermal conductivity and interfacial thermal resistance in thin spin-on materials used in extreme ultraviolet lithography (eUV) fabrication processing. The new capability of xSThM demonstrated here for the first time is poised to provide vital insights into thermal transport in advanced nanoscale materials and devices.

3.
Biointerphases ; 15(6): 061007, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218222

RESUMO

Plasma polymerization of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) yields thin films containing stable nitroxide radicals that have properties analogous to that of nitric oxide (NO) without short lifetimes. This property gives TEMPO films a wide variety of potential applications. Typically, control of the final film chemistry is difficult and the plasma discharge conditions must be tailored to in order to maximize the retention of these nitroxide groups during the polymerization and deposition process. In this study, plasma diagnostics and surface analysis of the deposited films were carried out to determine the optimal plasma conditions for the retention of nitroxide groups. These techniques included energy-resolved mass spectrometry, heated planar probe ion current measurements, deposition rate measurements, and x-ray photoelectron spectroscopy (XPS). Results show that operating the plasma with a combination of low input powers and high pressures produces a collisional discharge in which fragmentation of the TEMPO molecule is suppressed, leading to good retention of nitroxide groups. Ion energy distribution functions and quartz crystal microbalance measurements support the soft landing theory of ion deposition on the substrate within this γ-mode, in which the flux of low energy, soft landed ions form the primary contribution to film growth. XPS analysis of deposited polymers shows 75.7% retention of N-O groups in the polymer films deposited in a 25 Pa 5 W discharge.


Assuntos
Óxidos N-Cíclicos/química , Gases em Plasma/química , Polímeros/química , Espectrometria de Massas , Óxidos de Nitrogênio/química , Espectroscopia Fotoeletrônica , Polimerização , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
4.
ACS Appl Mater Interfaces ; 5(8): 3241-5, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23528037

RESUMO

A novel method of sample cross sectioning, beam-exit Ar-ion cross-sectional polishing, has been combined with scanning probe microscopy to study thin AlxGa1-xAs/GaAs layers. Additional contrast enhancement via a citric acid/hydrogen peroxide etch allows us to report the observation of layers as thin as 1 nm. Layer thickness measurements agree with transmission electron microscopy (TEM) data to 0.1 ± 0.2 nm, making this a very promising low-cost method for nanoscale analysis of semiconductor heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA