RESUMO
Human centromeres appear as constrictions on mitotic chromosomes and form a platform for kinetochore assembly in mitosis. Biophysical experiments led to a suggestion that repetitive DNA at centromeric regions form a compact scaffold necessary for function, but this was revised when neocentromeres were discovered on non-repetitive DNA. To test whether centromeres have a special chromatin structure we have analysed the architecture of a neocentromere. Centromere repositioning is accompanied by RNA polymerase II recruitment and active transcription to form a decompacted, negatively supercoiled domain enriched in 'open' chromatin fibres. In contrast, centromerisation causes a spreading of repressive epigenetic marks to surrounding regions, delimited by H3K27me3 polycomb boundaries and divergent genes. This flanking domain is transcriptionally silent and partially remodelled to form 'compact' chromatin, similar to satellite-containing DNA sequences, and exhibits genomic instability. We suggest transcription disrupts chromatin to provide a foundation for kinetochore formation whilst compact pericentromeric heterochromatin generates mechanical rigidity.
Assuntos
Heterocromatina , Histonas , Centrômero/genética , Cromatina/genética , DNA/genética , DNA Satélite , Heterocromatina/genética , Histonas/genética , Humanos , RNA Polimerase II/genéticaRESUMO
The maintenance of genome integrity is ensured by proper chromosome inheritance during mitotic and meiotic cell divisions. The chromosomal counterpart responsible for chromosome segregation to daughter cells is the centromere, at which the spindle apparatus attaches through the kinetochore. Although all mammalian centromeres are primarily composed of megabase-long repetitive sequences, satellite-free human neocentromeres have been described. Neocentromeres and evolutionary new centromeres have revolutionized traditional knowledge about centromeres. Over the past 20 years, insights have been gained into their organization, but in spite of these advancements, the mechanisms underlying their formation and evolution are still unclear. Today, through modern and increasingly accessible genome editing and long-read sequencing techniques, research in this area is undergoing a sudden acceleration. In this article, we describe the primary sequence of a previously described human chromosome 3 neocentromere and observe its possible evolution and repair results after a chromosome breakage induced through CRISPR-Cas9 technologies. Our data represent an exciting advancement in the field of centromere/neocentromere evolution and chromosome stability.
Assuntos
Sistemas CRISPR-Cas , Centrômero , Humanos , Animais , Centrômero/genética , Cinetocoros , Segregação de Cromossomos , Quebra Cromossômica , MamíferosRESUMO
Segmental duplications or low copy repeats (LCRs) constitute duplicated regions interspersed in the human genome, currently neglected in standard analyses due to their extreme complexity. Recent functional studies have indicated the potential of genes within LCRs in synaptogenesis, neuronal migration, and neocortical expansion in the human lineage. One of the regions with the highest proportion of duplicated sequence is the 22q11.2 locus, carrying eight LCRs (LCR22-A until LCR22-H), and rearrangements between them cause the 22q11.2 deletion syndrome. The LCR22-A block was recently reported to be hypervariable in the human population. It remains unknown whether this variability also exists in non-human primates, since research is strongly hampered by the presence of sequence gaps in the human and non-human primate reference genomes. To chart the LCR22 haplotypes and the associated inter- and intra-species variability, we de novo assembled the region in non-human primates by a combination of optical mapping techniques. A minimal and likely ancient haplotype is present in the chimpanzee, bonobo, and rhesus monkey without intra-species variation. In addition, the optical maps identified assembly errors and closed gaps in the orthologous chromosome 22 reference sequences. These findings indicate the LCR22 expansion to be unique to the human population, which might indicate involvement of the region in human evolution and adaptation. Those maps will enable LCR22-specific functional studies and investigate potential associations with the phenotypic variability in the 22q11.2 deletion syndrome.
RESUMO
In the Cercopithecini ancestor two chromosomes, homologous to human chromosomes 20 and 21, fused to form the Cercopithecini specific 20/21 association. In some individuals from the genus Cercopithecus, this association was shown to be polymorphic for the position of the centromere, suggesting centromere repositioning events. We set out to test this hypothesis by defining the evolutionary history of the 20/21 association in four Cercopithecini species from three different genera. The marker order of the various 20/21 associations was established using molecular cytogenetic techniques, including an array of more than 100 BACs. We discovered that five different forms of the 20/21 association were present in the four studied Cercopithecini species. Remarkably, in the two Cercopithecus species, we found individuals in which one homolog conserved the ancestral condition, but the other homolog was highly rearranged. The phylogenetic analysis showed that the heterozygosity in these two species originated about 8 million years ago and was maintained for this entire arc of time, surviving multiple speciation events. Our report is a remarkable extension of Dobzhansky's pioneering observation in Drosophila concerning the maintenance of chromosomal heterozygosity due to selective advantage. Dobzhansky's hypothesis recently received strong support in a series of detailed reports on the fruit fly genome. Our findings are first extension to primates, indeed to Old World monkeys phylogenetically close to humans of an analogous situation. Our results have important implications for hypotheses on how chromosome rearrangements, selection, and speciation are related.
Assuntos
Cromossomos de Mamíferos , Evolução Molecular , Haplorrinos/genética , Heterozigoto , Animais , Evolução Biológica , Centrômero , Duplicação Cromossômica , Coloração Cromossômica , Cromossomos Artificiais Bacterianos , Humanos , Hibridização in Situ Fluorescente , CariotipagemRESUMO
Sex/autosome translocations are rare events. The only known example in catarrhines is in the silvered-leaf monkey. Here the Y chromosome was reciprocally translocated with chromosome 1. The rearrangement produced an X1X2Y1Y2 sex chromosome system. At least three chromosomal variants of the intact chromosome 1 are known to exist. We characterized in high resolution the translocation products (Y1 and Y2) and the polymorphic forms of the intact chromosome 1 with a panel of more than 150 human BAC clones. We showed that the translocation products were extremely rearranged, in contrast to the high level of marker order conservation of the other silvered-leaf monkey chromosomes. Surprisingly, each translocation product appeared to form independent "chromosome lineages"; each having a myriad of distinct rearrangements. We reconstructed the evolutionary history of the translocation products by comparing the homologous chromosomes of two other colobine species: the African mantled guereza and the Indian langur. The results showed a massive reuse of breakpoints: only 12, out of the 40 breaks occurred in domains never reused in other rearrangements, while, strikingly, some domains were used up to four times. Such frequent breakpoint reuse if proved to be a general phenomenon has profound implications for mechanisms of chromosome evolution.
Assuntos
Cromossomos Humanos Par 1 , Colobinae/genética , Rearranjo Gênico , Translocação Genética , Cromossomo Y , Animais , Feminino , Instabilidade Genômica , Humanos , MasculinoRESUMO
Genome amplification in the form of rings or giant rod-shaped marker chromosomes (RGMs) is a common genetic alteration in soft tissue tumors. The mitotic stability of these structures is often rescued by perfectly functioning analphoid neocentromeres, which therefore significantly contribute to cancer progression. Here, we disentangled the genomic architecture of many neocentromeres stabilizing marker chromosomes in well-differentiated liposarcoma and lung sarcomatoid carcinoma samples. In cells carrying heavily rearranged RGMs, these structures were assembled as patchworks of multiple short amplified sequences, disclosing an extremely high level of complexity and definitely ruling out the existence of regions prone to neocentromere seeding. Moreover, by studying two well-differentiated liposarcoma samples derived from the onset and the recurrence of the same tumor, we documented an expansion of the neocentromeric domain that occurred during tumor progression, which reflects a strong selective pressure acting toward the improvement of the neocentromeric functionality in cancer. In lung sarcomatoid carcinoma cells we documented, extensive "centromere sliding" phenomena giving rise to multiple, closely mapping neocentromeric epialleles on separate coexisting markers occur, likely due to the instability of neocentromeres arising in cancer cells. Finally, by investigating the transcriptional activity of neocentromeres, we came across a burst of chimeric transcripts, both by extremely complex genomic rearrangements, and cis/trans-splicing events. Post-transcriptional editing events have been reported to expand and variegate the genetic repertoire of higher eukaryotes, so they might have a determining role in cancer. The increased incidence of fusion transcripts, might act as a driving force for the genomic amplification process, together with the increased transcription of oncogenes.
Assuntos
Cromossomos Humanos , Marcadores Genéticos , Genômica , Neoplasias/genética , Transcriptoma , Linhagem Celular Tumoral , Centrômero , Genômica/métodos , Humanos , Hibridização in Situ Fluorescente , Polimorfismo de Nucleotídeo Único , Transcrição Gênica , Sequenciamento Completo do GenomaRESUMO
Most evolutionary new centromeres (ENC) are composed of large arrays of satellite DNA and surrounded by segmental duplications. However, the hypothesis is that ENCs are seeded in an anonymous sequence and only over time have acquired the complexity of "normal" centromeres. Up to now evidence to test this hypothesis was lacking. We recently discovered that the well-known polymorphism of orangutan chromosome 12 was due to the presence of an ENC. We sequenced the genome of an orangutan homozygous for the ENC, and we focused our analysis on the comparison of the ENC domain with respect to its wild type counterpart. No significant variations were found. This finding is the first clear evidence that ENC seedings are epigenetic in nature. The compaction of the ENC domain was found significantly higher than the corresponding WT region and, interestingly, the expression of the only gene embedded in the region was significantly repressed.
Assuntos
Centrômero/genética , Epigênese Genética , Evolução Molecular , Animais , Linhagem Celular , Sequência Conservada , DNA Satélite/genética , Humanos , Pongo abeliiRESUMO
The public human genome sequencing project utilized a hierarchical approach. A large number of BAC/PAC clones, with an insert size approximate from 50 kb to 300 kb, were identified and finely mapped with respect to the Sequence Tagged Site (STS) physical map and with respect to each other. A "golden path" of BACs, covering the entire human genome, was then selected and each clone was fully sequenced. The large number of remaining BACs was not fully sequenced, but the availability of the end sequence (~800-1000 bp) at each end allowed them to be very precisely mapped on the human genome.The search for copy number variations of the human genome used several strategies. One of these approaches took advantage of the fact that fosmid clones, contrary to BAC/PAC clones, have a fixed insert size (~40 kb) (Kidd et al., Nature 453: 56-64, 2008). In this context, the ends of ~7 million fosmid clones were sequenced, and therefore it was possible to precisely map these clones on the human genome.In summary, a large number of genomic clones (GC) are available for FISH experiments. They usually yield bright FISH signals and are extremely precious for molecular cytogenetics, and in particular cancer cytogenetics. The already-labeled probes available commercially are usually based on a combination of such GCs. The present chapter summarizes the protocols for extracting, labeling, and hybridization onto slides of DNA obtained from GC.
Assuntos
Sondas de DNA , Hibridização in Situ Fluorescente/métodos , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Humanos , Marcação por IsótopoRESUMO
The distribution of genetic diversity in great ape species is likely to have been affected by patterns of dispersal and mating. This has previously been investigated by sequencing autosomal and mitochondrial DNA (mtDNA), but large-scale sequence analysis of the male-specific region of the Y Chromosome (MSY) has not yet been undertaken. Here, we use the human MSY reference sequence as a basis for sequence capture and read mapping in 19 great ape males, combining the data with sequences extracted from the published whole genomes of 24 additional males to yield a total sample of 19 chimpanzees, four bonobos, 14 gorillas, and six orangutans, in which interpretable MSY sequence ranges from 2.61 to 3.80 Mb. This analysis reveals thousands of novel MSY variants and defines unbiased phylogenies. We compare these with mtDNA-based trees in the same individuals, estimating time-to-most-recent common ancestor (TMRCA) for key nodes in both cases. The two loci show high topological concordance and are consistent with accepted (sub)species definitions, but time depths differ enormously between loci and (sub)species, likely reflecting different dispersal and mating patterns. Gorillas and chimpanzees/bonobos present generally low and high MSY diversity, respectively, reflecting polygyny versus multimale-multifemale mating. However, particularly marked differences exist among chimpanzee subspecies: The western chimpanzee MSY phylogeny has a TMRCA of only 13.2 (10.8-15.8) thousand years, but that for central chimpanzees exceeds 1 million years. Cross-species comparison within a single MSY phylogeny emphasizes the low human diversity, and reveals species-specific branch length variation that may reflect differences in long-term generation times.
Assuntos
DNA Mitocondrial , Hominidae/classificação , Hominidae/genética , Filogenia , Cromossomo Y , Distribuição Animal , Animais , Feminino , Ordem dos Genes , Genoma , Genômica , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Comportamento Sexual AnimalRESUMO
Fluorescence in situ hybridization (FISH), especially chromosome painting, has been extensively exploited in the phylogenetic reconstruction of primate evolution. Although chromosome painting is a key method to map translocations, it is not effective in detecting chromosome inversions, which may be up to four times more frequent than other chromosomal rearrangements. BAC-FISH instead can economically delineate marker order and reveal intrachromosomal rearrangements. However, up to now, BAC-FISH was rarely used to study the chromosomes of New World monkeys partly due to technical difficulties. In this paper, we used BAC-FISH to disentangle the complex evolutionary history of the ancestral 14/15 association in NWMs, beginning from the squirrel monkey (Saimiri boliviensis). To improve the hybridization efficiency of BAC-FISH in NWMs, we "translated" the human BACs into Callithrix jacchus (CJA) BACs, which yielded much higher hybridization efficiencies on other NWM species than human BACs. Our results disclosed 14 synteny blocks in squirrel monkeys, 7 more than with chromosome painting. We then applied a subset of CJA BACs on six other NWM species. The comparison of the hybridization pattern of these species contained phylogenetic information to discriminate evolutionary relationships. Notably Aotus was found to share an inversion with Callithrix, thus definitely assigning the genus Aotus to Cebidae. The present study can be seen as a paradigmatic approach to investigate the phylogenetics of NWMs by molecular cytogenetics.
Assuntos
Inversão Cromossômica/genética , Coloração Cromossômica/métodos , Cromossomos Artificiais Bacterianos/genética , Sintenia/genética , Translocação Genética/genética , Animais , Atelinae , Evolução Biológica , Linhagem Celular , Evolução Molecular , Humanos , Cariótipo , Filogenia , PitheciidaeRESUMO
We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.
Assuntos
Chlorocebus aethiops/genética , Genoma , Genômica , Animais , Chlorocebus aethiops/classificação , Coloração Cromossômica , Biologia Computacional/métodos , Evolução Molecular , Rearranjo Gênico , Variação Genética , Genômica/métodos , Cariótipo , Complexo Principal de Histocompatibilidade/genética , Anotação de Sequência Molecular , Filogenia , FilogeografiaRESUMO
The centromere directs the segregation of chromosomes during mitosis and meiosis. It is a distinct genetic locus whose identity is established through epigenetic mechanisms that depend on the deposition of centromere-specific centromere protein A (CENP-A) nucleosomes. This important chromatin domain has so far escaped comprehensive molecular analysis due to its typical association with highly repetitive satellite DNA. In previous work, we discovered that the centromere of horse chromosome 11 is completely devoid of satellite DNA; this peculiar feature makes it a unique model to dissect the molecular architecture of mammalian centromeres. Here, we exploited this native satellite-free centromere to determine the precise localization of its functional domains in five individuals: We hybridized DNA purified from chromatin immunoprecipitated with an anti CENP-A antibody to a high resolution array (ChIP-on-chip) of the region containing the primary constriction of horse chromosome 11. Strikingly, each individual exhibited a different arrangement of CENP-A binding domains. We then analysed the organization of each domain using a single nucleotide polymorphism (SNP)-based approach and single molecule analysis on chromatin fibres. Examination of the ten instances of chromosome 11 in the five individuals revealed seven distinct 'positional alleles', each one extending for about 80-160 kb, were found across a region of about 500 kb. Our results demonstrate that CENP-A binding domains are autonomous relative to the underlying DNA sequence and are characterized by positional instability causing the sliding of centromere position. We propose that this dynamic behaviour may be common in mammalian centromeres and may determine the establishment of epigenetic alleles.
Assuntos
Centrômero/genética , Cromossomos de Mamíferos/genética , Cavalos/genética , Alelos , Animais , Autoantígenos/genética , Linhagem Celular , Proteína Centromérica A , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Clonagem Molecular , DNA Satélite , Epigênese Genética , Feminino , Masculino , Meiose , Procedimentos Analíticos em Microchip , Mitose , Nucleossomos/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Gene amplification is relatively common in tumors. In certain subtypes of sarcoma, it often occurs in the form of ring and/or giant rod-shaped marker (RGM) chromosomes whose mitotic stability is frequently rescued by ectopic novel centromeres (neocentromeres). Little is known about the origin and structure of these RGM chromosomes, including how they arise, their internal organization, and which sequences underlie the neocentromeres. To address these questions, 42 sarcomas with RGM chromosomes were investigated to detect regions prone to double strand breaks and possible functional or structural constraints driving the amplification process. We found nine breakpoint cluster regions potentially involved in the genesis of RGM chromosomes, which turned out to be significantly enriched in poly-pyrimidine traits. Some of the clusters were located close to genes already known to be relevant for sarcomas, thus indicating a potential functional constraint, while others mapped to transcriptionally inactive chromatin domains enriched in heterochromatic sites. Of note, five neocentromeres were identified after analyzing 13 of the cases by fluorescent in situ hybridization. ChIP-on-chip analysis with antibodies against the centromeric protein CENP-A showed that they were a patchwork of small genomic segments derived from different chromosomes, likely joint to form a contiguous sequence during the amplification process.
Assuntos
Pontos de Quebra do Cromossomo , Cromossomos em Anel , Sarcoma/genética , Centrômero/genética , Epigênese Genética , Amplificação de Genes/genética , Humanos , Hibridização in Situ Fluorescente , Sarcoma/ultraestruturaRESUMO
BACKGROUND: Small supernumerary marker chromosomes (sSMC) occur in 0.072% of unselected cases of prenatal diagnoses, and their molecular cytogenetic characterization is required to establish a reliable karyotype-phenotype correlation. A small group of sSMC are C-band-negative and devoid of alpha-satellite DNA. We report the molecular cytogenetic characterization of a de novo analphoid sSMC derived from 18q22.1âqter in cultured amniocytes. RESULTS: We identified an analphoid sSMC in cultured amniocytes during a prenatal diagnosis performed because of advanced maternal age. GTG-banding revealed an sSMC in all metaphases. FISH experiments with a probe specific for the chromosome 18 centromere, and C-banding revealed neither alphoid sequences nor C-banding-positive satellite DNA thereby suggesting the presence of a neocentromere. To characterize the marker in greater detail, we carried out additional FISH experiments with a set of appropriate BAC clones. The pattern of the FISH signals indicated a symmetrical organization of the marker, the breakpoint likely representing the centromere of an inverted duplicated chromosome that results in tetrasomy of 18q22.1âqter. The karyotype after molecular cytogenetic investigations was interpreted as follows: 47,XY,+inv dup(18)(qterâq22.1::q22.1âneoâqter). CONCLUSION: Our case is the first report, in the prenatal diagnosis setting, of a de novo analphoid marker chromosome originating from the long arm of chromosome 18, and the second report of a neocentromere formation at 18q22.1.
RESUMO
The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine structure of MYC-containing dmin/hsr amplicons harboring sequences from several different chromosomes in seven tumor cell lines, and characterized an unprecedented number of hsr insertion sites. Local chromosome shattering involving a single-step catastrophic event (chromothripsis) was recently proposed to explain clustered chromosomal rearrangements and genomic amplifications in cancer. Our bioinformatics analyses based on the listed criteria to define chromothripsis led us to exclude it as the driving force underlying amplicon genesis in our samples. Instead, the finding of coexisting heterogeneous amplicons, differing in their complexity and chromosome content, in cell lines derived from the same tumor indicated the occurrence of a multi-step evolutionary process in the genesis of dmin/hsr. Our integrated approach allowed us to gather a complete view of the complex chromosome rearrangements occurring within MYC amplicons, suggesting that more than one model may be invoked to explain the origin of dmin/hsr in cancer. Finally, we identified PVT1 as a target of fusion events, confirming its role as breakpoint hotspot in MYC amplification.
Assuntos
Cromossomos Humanos/química , Amplificação de Genes , Genes Neoplásicos , Genes myc , Neoplasias/genética , Linhagem Celular Tumoral , Evolução Molecular , Expressão Gênica , Fusão Gênica , Genoma Humano , Células HL-60 , HumanosRESUMO
An Evolutionary Neo-Centromere (ENC) is a centromere that emerged in an ectopic region of a chromosome during evolution. It is thought that the old centromere must be inactivated because dicentric chromosomes are not viable. The aim of the present study was to investigate whether 3D arrangement in the interphase nucleus of the novel and old centromeric domains was affected by the repositioning event. The data we present here strongly indicate that the ENC phenomenon does not affect the 3D location of either novel or old centromeres. Very likely, other features, such as gene density, rather than the newly acquired or lost functions, define positioning in the nucleus.
Assuntos
Centrômero/genética , Centrômero/ultraestrutura , Evolução Molecular , Filogenia , Primatas/genética , Animais , Atelinae/genética , Evolução Biológica , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/fisiologia , Cromossomos , Genoma , Gorilla gorilla/genética , Humanos , Hibridização in Situ Fluorescente , Interfase/genética , Macaca nemestrina/genética , Pongo pygmaeus/genéticaRESUMO
Juvenile idiopathic epilepsy (JIE) in Arabian foals resembles benign-familial neonatal convulsion (BFNC) syndrome, a rare idiopathic epilepsy of new-born humans. BFNC syndrome exhibits genetic heterogeneity, as has been hypothesised to occur in Arabian foals, and is known to be caused by mutations in the voltage-gated potassium channel subunit KCNQ2 and KCNQ3 genes. The close phenotypic characteristics of both Arabian foals and children suggest these epileptic syndromes are caused by the same genetic disorder. In horses, the KCNQ2 and KCNQ3 genes are located on the terminal region of chromosomes 22 and 9, respectively, essentially homologous to their location on chromosomes 20q13.3 and 8q24 in humans. Gene trees for the KCNQ2 and KCNQ3 genes between horses and other mammals, particularly humans and mice, were constructed and compared to widely accepted mammalian phylogenetic trees. The KCNQ2 gene tree exhibited close clustering between horses and humans, relative to horses and mice, in contrast to the evolutionary trees of other mammals. Distance values between the horse and human groups were lower as opposed to those found between the horse and mouse groups. The similarity between the horse and the human, especially for the KCNQ2 gene, where the majority of mutations causing BFNC have been found, supports the hypothesis of similar heritable and genetic patterns of the disease in both species and suggests that contrary to the classic mouse-model concept, humans may be a more suitable model for the study of JIE in Arabian foals.
Assuntos
Epilepsia Neonatal Benigna/genética , Doenças dos Cavalos/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Animais , Sequência de Bases , Cavalos , Mutação , Filogenia , Homologia de SequênciaRESUMO
INTRODUCTION: Premature ovarian failure is defined as the cessation of ovarian activity before the age of 40 years. It is biochemically characterized by low levels of gonadal hormones (estrogens and inhibins) and high levels of gonadotropins (luteinizing hormone and follicle-stimulating hormone). CASE PRESENTATION: Our patient, a 22-year-old Caucasian woman under evaluation for infertility, had experienced secondary amenorrhea from the age of 18. No positive family history was noted regarding premature menopause. An examination of our patient's karyotype showed the presence of a reciprocal translocation, apparently balanced, which had the X chromosome long arm (q13) and the 14 chromosome short arm (p12) with consequent karyotype: 46, X, t(X; 14)(q13;p12). CONCLUSIONS: Our study has underlined that karyotyping is one of the fundamental investigations in the evaluation of amenorrhea. It highlighted a genetic etiology, in the form of a chromosomal abnormality, as the causal factor in amenorrhea.
RESUMO
Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human-gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans.