Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14862, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050356

RESUMO

The twin-arginine translocation (Tat) pathway involves an inbuilt quality control (QC) system that synchronizes the proofreading of substrate protein folding with lipid bilayer transport. However, the molecular details of this QC mechanism remain poorly understood. Here, we hypothesized that the conformational state of Tat substrates is directly sensed by the TatB component of the bacterial Tat translocase. In support of this hypothesis, several TatB variants were observed to form functional translocases in vivo that had compromised QC activity as evidenced by the uncharacteristic export of several misfolded protein substrates. These variants each possessed cytoplasmic membrane-extrinsic domains that were either truncated or mutated in the vicinity of a conserved, highly flexible α-helical domain. In vitro folding experiments revealed that the TatB membrane-extrinsic domain behaved like a general molecular chaperone, transiently binding to highly structured, partially unfolded intermediates of a model protein, citrate synthase, in a manner that prevented its irreversible aggregation and stabilized the active species. Collectively, these results suggest that the Tat translocase may use chaperone-like client recognition to monitor the conformational status of its substrates.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Dobramento de Proteína , Transporte Proteico , Arginina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico/genética , Transporte Proteico/fisiologia
2.
ACS Synth Biol ; 10(11): 2947-2958, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34757717

RESUMO

Escherichia coli remains one of the preferred hosts for biotechnological protein production due to its robust growth in culture and ease of genetic manipulation. It is often desirable to export recombinant proteins into the periplasmic space for reasons related to proper disulfide bond formation, prevention of aggregation and proteolytic degradation, and ease of purification. One such system for expressing heterologous secreted proteins is the twin-arginine translocation (Tat) pathway, which has the unique advantage of delivering correctly folded proteins into the periplasm. However, transit times for proteins through the Tat translocase, comprised of the TatABC proteins, are much longer than for passage through the SecYEG pore, the translocase associated with the more widely utilized Sec pathway. To date, a high protein flux through the Tat pathway has yet to be demonstrated. To address this shortcoming, we employed a directed coevolution strategy to isolate mutant Tat translocases for their ability to deliver higher quantities of heterologous proteins into the periplasm. Three supersecreting translocases were selected that each exported a panel of recombinant proteins at levels that were significantly greater than those observed for wild-type TatABC or SecYEG translocases. Interestingly, all three of the evolved Tat translocases exhibited quality control suppression, suggesting that increased translocation flux was gained by relaxation of substrate proofreading. Overall, our discovery of more efficient translocase variants paves the way for the use of the Tat system as a powerful complement to the Sec pathway for secreted production of both commodity and high value-added proteins.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Transporte Proteico/genética , Sistema de Translocação de Argininas Geminadas/genética , Proteínas de Transporte/genética , Proteínas de Membrana Transportadoras/genética , Periplasma/genética , Dobramento de Proteína , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes
3.
Sci Rep ; 4: 7570, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25531212

RESUMO

The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 ß-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed ß-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.


Assuntos
Aldeído Oxidase , Escherichia coli , Complexos Multiproteicos , Engenharia de Proteínas , Aldeído Oxidase/genética , Aldeído Oxidase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína
4.
Proc Natl Acad Sci U S A ; 109(33): 13392-7, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847444

RESUMO

The bacterial twin-arginine translocation (Tat) pathway facilitates the transport of correctly folded proteins across the tightly sealed cytoplasmic membrane. Here, we report the isolation and characterization of suppressor mutations in the Tat translocase that allow export of misfolded proteins, which form structures that are not normally tolerated by the wild-type translocase. Selection of suppressors was enabled by a genetic assay that effectively linked in vivo folding and stability of a test protein with Tat export efficiency of a selectable marker protein, namely TEM-1 ß-lactamase. By using a test protein named α(3)B-a designed three-helix-bundle protein that forms collapsed, stable molten globules but lacks a uniquely folded structure-translocase mutants that rescued export of this protein were readily identified. Each mutant translocase still efficiently exported folded substrate proteins, indicating that the substrate specificity of suppressors was relaxed but not strictly altered. A subset of the suppressors could also export other misfolded proteins, such as the aggregation-prone α(3)A protein and reduced alkaline phosphatase. Importantly, the isolation of genetic suppressors that inactivate the Tat quality-control mechanism provides direct evidence for the participation of the Tat translocase in structural proofreading of substrate proteins and reveals epitopes in the translocase that are important for this process.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Dobramento de Proteína , Fosfatase Alcalina , Resistência Microbiana a Medicamentos/genética , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Genes Supressores , Proteínas de Membrana Transportadoras/química , Proteínas Mutantes/isolamento & purificação , Sinais Direcionadores de Proteínas , Transporte Proteico , Seleção Genética , Transdução de Sinais/genética , Especificidade por Substrato , Supressão Genética
5.
J Mol Biol ; 416(1): 94-107, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22197376

RESUMO

A hallmark of the bacterial twin-arginine translocation (Tat) pathway is its ability to export folded proteins. Here, we discovered that overexpressed Tat substrate proteins form two distinct, long-lived translocation intermediates that are readily detected by immunolabeling methods. Formation of the early translocation intermediate Ti-1, which exposes the N- and C-termini to the cytoplasm, did not require an intact Tat translocase, a functional Tat signal peptide, or a correctly folded substrate. In contrast, formation of the later translocation intermediate, Ti-2, which exhibits a bitopic topology with the N-terminus in the cytoplasm and C-terminus in the periplasm, was much more particular, requiring an intact translocase, a functional signal peptide, and a correctly folded substrate protein. The ability to directly detect Ti-2 intermediates was subsequently exploited for a new protein engineering technology called MAD-TRAP (membrane-anchored display for Tat-based recognition of associating proteins). Through the use of just two rounds of mutagenesis and screening with MAD-TRAP, the intracellular folding and antigen-binding activity of a human single-chain antibody fragment were simultaneously improved. This approach has several advantages for library screening, including the unique involvement of the Tat folding quality control mechanism that ensures only native-like proteins are displayed, thus eliminating poorly folded sequences from the screening process.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Engenharia de Proteínas/métodos , Antígenos/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Imuno-Histoquímica/métodos , Ligantes , Mutagênese/genética , Periplasma/genética , Periplasma/metabolismo , Dobramento de Proteína , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo
6.
Mol Cell ; 41(3): 343-53, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21292166

RESUMO

In Escherichia coli, translocation of exported proteins across the cytoplasmic membrane is dependent on the motor protein SecA and typically begins only after synthesis of the substrate has already been completed (i.e., posttranslationally). Thus, it has generally been assumed that the translocation machinery also recognizes its protein substrates posttranslationally. Here we report a specific interaction between SecA and the ribosome at a site near the polypeptide exit channel. This interaction is mediated by conserved motifs in SecA and ribosomal protein L23, and partial disruption of this interaction in vivo by introducing mutations into the genes encoding SecA or L23 affects the efficiency of translocation by the posttranslational pathway. Based on these findings, we propose that SecA could interact with its nascent substrates during translation in order to efficiently channel them into the "posttranslational" translocation pathway.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Ribossomos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Sequência Conservada , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
7.
Methods Mol Biol ; 705: 53-67, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21125380

RESUMO

The expression of heterologous proteins in robust hosts such as Escherichia coli is often plagued by the tendency of the protein of interest to misfold and aggregate. To engineer and improve the folding properties of virtually any protein of interest, the quality control process inherent to the bacterial twin- arginine translocation (Tat) pathway can be exploited. The Tat pathway preferentially transports folded substrates across the inner membrane of E. coli with remarkable quality control that can provide selection pressure for protein folding and solubility. By fusing desired proteins to the N-terminus of mature TEM-1 ß-lactamase and using an N-terminal signal peptide to target the fusion to the Tat pathway, it is possible to perform genetic selections for folded, soluble proteins. Here, we present a method for exploiting the folding quality control process associated with the Tat pathway for engineering folding-enhanced proteins.


Assuntos
Arginina/metabolismo , Escherichia coli/metabolismo , Engenharia de Proteínas/métodos , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Arginina/genética , Escherichia coli/genética , Sinais Direcionadores de Proteínas/fisiologia , Proteínas Recombinantes de Fusão/genética , Solubilidade , beta-Lactamases/biossíntese , beta-Lactamases/genética
8.
Bioconjug Chem ; 20(8): 1482-9, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19650648

RESUMO

We report a highly specific, robust, and generic method for noncovalent labeling of cellular proteins with highly fluorescent core-shell silica nanoparticles termed C dots. Our approach uses short genetically engineered peptides with affinity for silica (GEPS) that are site-specifically introduced at the termini or in loops of cellular proteins. Because GEPS are absent from native cell surface proteins, GEPS-tagged recombinant proteins can be selectively and rapidly labeled with fluorescent C dots. To demonstrate the versatility of our method, we targeted 30 nm C dots to two structurally distinct integral outer membrane proteins in Escherichia coli, FhuA and OmpX. Efficient labeling was achieved in 15 min or less and was observed to be highly sensitive and specific. This strategy provides a powerful technique, comparable to other chemical and biological labeling strategies, for efficient and quantitative investigation of protein function in live biological cells.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/citologia , Corantes Fluorescentes/química , Hidrolases/química , Nanopartículas/química , Peptídeos/química , Peptídeos/genética , Sítios de Ligação , Escherichia coli/química , Viabilidade Microbiana , Engenharia de Proteínas , Dióxido de Silício/química , Coloração e Rotulagem
9.
Biomaterials ; 29(23): 3298-305, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18468676

RESUMO

Heparin-protein interactions are important in many physiological processes including angiogenesis, the growth of new blood vessels from existing ones. We have previously developed a highly angiogenic self-assembling gel, wherein the self-assembly process is triggered by the interactions between heparin and peptide amphiphiles (PAs) with a consensus heparin binding sequence. In this report, this consensus sequence was scrambled and incorporated into a new peptide amphiphile in order to study its importance in heparin interaction and bioactivity. Heparin was able to trigger gel formation of the scrambled peptide amphiphile (SPA). Furthermore, the affinity of the scrambled molecule for heparin was unchanged as shown by isothermal titration calorimetry and high Förster resonance emission transfer efficiency. However, both the mobile fraction and the dissociation rate constant of heparin, using fluorescence recovery after photobleaching, were markedly higher in its interaction with the scrambled molecule implying a weaker association. Importantly, the scrambled peptide amphiphile-heparin gel had significantly less angiogenic bioactivity as shown by decreased tubule formation of sandwiched endothelial cells. Hence, we believe that the presence of the consensus sequence stabilizes the interaction with heparin and is important for the bioactivity of these new materials.


Assuntos
Heparina/administração & dosagem , Heparina/farmacocinética , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacocinética , Tensoativos/administração & dosagem , Tensoativos/farmacocinética , Sequência de Aminoácidos , Animais , Bovinos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Recuperação de Fluorescência Após Fotodegradação , Heparina/química , Substâncias Macromoleculares , Teste de Materiais , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Neovascularização Fisiológica/efeitos dos fármacos , Oligopeptídeos/química , Tensoativos/química
10.
Langmuir ; 24(3): 826-9, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18186657

RESUMO

Self-assembled monolayers (SAMs) of the disulfide [S(CH2CH2O)6CH3]2 ([S(EO)6]2) on Au from 95% ethanol and from 100% water are described. Spectroscopic ellipsometry and reflection-absorption infrared spectroscopy indicate that the [S(EO)6]2 films are similar to the disordered films of HS(CH2CH2O)6CH3 ((EO)6) and HS(CH2)3O(CH2CH2O)5CH3 (C3EO5) at their protein adsorption minima. The [S(EO)6]2 SAMs exhibit constant film thickness (d) of 1.2 +/- 0.2 nm over long immersion times (up to 20 days) and do not attain the highly ordered, 7/2 helical structure of the (EO)6 and C3EO5 SAMs (d = 2.0 nm). Exposure of these self-limiting [S(EO)6]2 SAMs to bovine serum albumin show high resistance to protein adsorption.


Assuntos
Materiais Biocompatíveis/química , Óxido de Etileno/química , Proteínas/química , Adsorção , Animais , Bovinos , Soroalbumina Bovina/química , Espectrofotometria Infravermelho , Compostos de Sulfidrila/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA