Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 7(9): 1156-1169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37127708

RESUMO

The treatment of chronic inflammation with systemically administered anti-inflammatory treatments is associated with moderate-to-severe side effects, and the efficacy of locally administered drugs is short-lived. Here we show that inflammation can be locally suppressed by a fusion protein of the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO) and galectin-3 (Gal3). Gal3 anchors IDO to tissue, limiting the diffusion of IDO-Gal3 away from the injection site. In rodent models of endotoxin-induced inflammation, psoriasis, periodontal disease and osteoarthritis, the fusion protein remained in the inflamed tissues and joints for about 1 week after injection, and the amelioration of local inflammation, disease progression and inflammatory pain in the animals were concomitant with homoeostatic preservation of the tissues and with the absence of global immune suppression. IDO-Gal3 may serve as an immunomodulatory enzyme for the control of focal inflammation in other inflammatory conditions.


Assuntos
Galectina 2 , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Progressão da Doença
2.
Microbiol Spectr ; 10(2): e0000222, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35286133

RESUMO

Like other members of the phylum Bacteroidetes, the oral anaerobe Porphyromonas gingivalis synthesizes a variety of sphingolipids, similar to its human host. Studies have shown that synthesis of these lipids (dihydroceramides [DHCs]) is involved in oxidative stress resistance, the survival of P. gingivalis during stationary phase, and immune modulation. Here, we constructed a deletion mutant of P. gingivalis strain W83 with a deletion of the gene encoding DhSphK1, a protein that shows high similarity to a eukaryotic sphingosine kinase, an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate. Our data show that deletion of the dhSphK1 gene results in a shift in the sphingolipid composition of P. gingivalis cells; specifically, the mutant synthesizes higher levels of phosphoglycerol DHCs (PG-DHCs) than the parent strain W83. Although PG1348 shows high similarity to the eukaryotic sphingosine kinase, we discovered that the PG1348 enzyme is unique, since it preferentially phosphorylates dihydrosphingosine, not sphingosine. Besides changes in lipid composition, the W83 ΔPG1348 mutant displayed a defect in cell division, the biogenesis of outer membrane vesicles (OMVs), and the amount of K antigen capsule. Taken together, we have identified the first bacterial dihydrosphingosine kinase whose activity regulates the lipid profile of P. gingivalis and underlies a regulatory mechanism of immune modulation. IMPORTANCE Sphingoid base phosphates, such as sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), act as ligands for S1P receptors, and this interaction is known to play a central role in mediating angiogenesis, vascular stability and permeability, and immune cell migration to sites of inflammation. Studies suggest that a shift in ratio to higher levels of dhS1P in relation to S1P alters downstream signaling cascades due to differential binding and activation of the various S1P receptor isoforms. Specifically, higher levels of dhS1P are thought to be anti-inflammatory. Here, we report on the characterization of a novel kinase in Porphyromonas gingivalis that phosphorylates dihydrosphingosine to form dhS1P.


Assuntos
Transdução de Sinais , Esfingosina , Movimento Celular , Humanos , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/metabolismo
3.
Front Oral Health ; 2: 686402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35048031

RESUMO

Periodontal diseases are chronic inflammatory diseases of the periodontium that result in progressive destruction of the soft and hard tissues supporting the teeth, and it is the most common cause of tooth loss among adults. In the US alone, over 100 million individuals are estimated to have periodontal disease. Subgingival bacteria initiate and sustain inflammation, and, although several bacteria have been associated with periodontitis, Porphyromonas gingivalis has emerged as the key etiological organism significantly contributing to the disease. Currently, intensive clinical maintenance strategies are deployed to mitigate the further progression of disease in afflicted individuals; however, these treatments often fail to stop disease progression, and, as such, the development of an effective vaccine for periodontal disease is highly desirable. We generated a conjugate vaccine, comprising of the purified capsular polysaccharide of P. gingivalis conjugated to eCRM®, a proprietary and enhanced version of the CRM197 carrier protein with predetermined conjugation sites (Pg-CV). Mice immunized with alum adjuvanted Pg-CV developed robust serum levels of whole organism-specific IgG in comparison to animals immunized with unconjugated capsular polysaccharide alone. Using the murine oral bone loss model, we observed that mice immunized with the capsule-conjugate vaccine were significantly protected from the effects of P. gingivalis-elicited oral bone loss. Employing a preclinical model of infection-elicited oral bone loss, our data support that a conjugate vaccine incorporating capsular polysaccharide antigen is effective in reducing the main clinical endpoint of periodontal disease-oral bone destruction. Further development of a P. gingivalis capsule-based conjugate vaccine for preventing periodontal diseases is supported.

4.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33361202

RESUMO

Sphingolipids (SLs) are essential structural components of mammalian cell membranes. Our group recently determined that the oral anaerobe Porphyromonas gingivalis delivers its SLs to host cells and that the ability of P. gingivalis to synthesize SLs limits the elicited host inflammatory response during cellular infection. As P. gingivalis robustly produces outer membrane vesicles (OMVs), we hypothesized that OMVs serve as a delivery vehicle for SLs, that the SL status of the OMVs may impact cargo loading to OMVs, and that SL-containing OMVs limit elicited host inflammation similar to that observed by direct bacterial challenge. Transwell cell culture experiments determined that in comparison to the parent strain W83, the SL-null mutant elicited a hyperinflammatory immune response from THP-1 macrophage-like cells with elevated tumor necrosis factor alpha (TNF-α), interleukin 1ß (IL-1ß), and IL-6. Targeted assessment of Toll-like receptors (TLRs) identified elevated expression of TLR2, unchanged TLR4, and elevated expression of the adaptor molecules MyD88 and TRIF (Toll/IL-1 receptor domain-containing adaptor-inducing beta interferon) by SL-null P. gingivalis No significant differences in gingipain activity were observed in our infection models, and both strains produced OMVs of similar sizes. Using comparative two-dimensional gel electrophoresis, we identified differences in the protein cargo of the OMVs between parent and SL-null strain. Importantly, use of purified OMVs recapitulated the cellular inflammatory response observed in the transwell system with whole bacteria. These findings provide new insights into the role of SLs in P. gingivalis OMV cargo assembly and expand our understanding of SL-OMVs as bacterial structures that modulate the host inflammatory response.


Assuntos
Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Macrófagos/imunologia , Porphyromonas gingivalis/imunologia , Porphyromonas gingivalis/metabolismo , Esfingolipídeos/imunologia , Vesículas Transportadoras/imunologia , Infecções por Bacteroidaceae/patologia , Transporte Biológico , Interações Hospedeiro-Patógeno , Imunomodulação , Mutação , Porphyromonas gingivalis/genética , Proteômica/métodos , Esfingolipídeos/metabolismo , Vesículas Transportadoras/metabolismo
5.
Life Sci ; 262: 118557, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035578

RESUMO

AIMS: Neuronal and non-neuronal TRPA1 channel plays an active role in the pathogenesis of several skin inflammatory diseases. Although a recent study identified the TRPA1 channel activation upon UVB exposure, its role in inflammatory, oxidative, and proliferative processes underlying UVB radiation-induced sunburn was not yet fully understood. We evaluated the TRPA1 channel contribution in inflammatory, oxidative, and proliferative states on skin inflammation induced by UVB radiation in mice. MAIN METHODS: TRPA1 role was evaluated from inflammatory (ear edema, myeloperoxidase, and N-acetyl-ß-D-glycosaminidase activities, histological changes, and cytokines levels), proliferative (epidermal hyperplasia, PCNA, and TRPA1 levels), and oxidative (reactive oxygen intermediates measure, H2O2 quantification, and NADPH oxidase activity) parameters caused by UVB radiation single (0.5 J/cm2) or repeated (0.1 J/cm2) exposure. We verified the contribution of non-neuronal and neuronal TRPA1 on UVB radiation-induced inflammatory parameters using RTX-denervation (50 µg/kg s.c.). KEY FINDINGS: TRPA1 blockade by the selective antagonist Lanette® N HC-030031 reduced all parameters induced by UVB radiation single (at concentration of 1%) or repeated (at concentration of 0.1%) exposure. We evidenced an up-regulation of the TRPA1 protein after UVB radiation repeated exposure, which was blocked by topical Lanette® N HC-030031 (0.1%). By RTX-denervation, we verified that non-neuronal TRPA1 also interferes in some inflammatory parameters induction. However, cutaneous nerve fibers seem to be most needed in the development of UVB radiation-induced inflammatory processes. SIGNIFICANCE: We propose the TRPA1 channel participates in the UVB radiation-induced sunburn in mice, and it could be a promising therapeutic target to treat skin inflammatory disorders.


Assuntos
Edema/patologia , Inflamação/patologia , Pele/patologia , Canal de Cátion TRPA1/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Peroxidase/metabolismo , Raios Ultravioleta
6.
Orthod Craniofac Res ; 22 Suppl 1: 180-185, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31074132

RESUMO

OBJECTIVES: Orthodontic treatment consists of numerous appliance activations that rely on stimulation of osteoclasts at alveolar bone sites. However, the action of osteoclast-like cells on dentin ("odontoclasts") is a pathological side effect of orthodontic treatment. The aim of this article is twofold: (a) To report preliminary results from ongoing cell culture experiments to identify unique markers of dentin resorption, and (b) To discuss our work using nanoparticle tracking analysis (NTA) and exosomes for developing biological fluid-based biopsies to monitor clastic cell activity. SETTING AND SAMPLE POPULATION: Twelve healthy volunteers in permanent dentition. MATERIAL AND METHODS: For the in vitro experiments, murine clastic cell precursors were cultured on dentin or bone slices for 7 days and phage-display biopanning was used to identify molecular surface differences between osteoclasts and odontoclasts. In the human study, gingival crevicular fluid (GCF) samples were collected using different tools and analysed for protein and exosome recovery. RESULTS: Biopanning generated antibody fragments that were uniquely reactive to odontoclasts. Numerous nanoparticles in the size range of exosomes were detected in all of the human GCF samples. CONCLUSIONS: Our results support that there are molecular differences between osteoclasts and odontoclasts. Emerging technologies may allow the use of exosomes in GCF as a clinical tool to detect markers of root resorption.


Assuntos
Reabsorção da Raiz , Animais , Dentina , Líquido do Sulco Gengival , Humanos , Camundongos , Osteoclastos , Proteômica
7.
Oncotarget ; 8(1): 1177-1189, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27901481

RESUMO

Cancer cachexia represents a debilitating syndrome that diminishes quality of life and augments the toxicities of conventional treatments. Cancer cachexia is particularly debilitating in patients with pancreatic cancer (PC). Mechanisms responsible for cancer cachexia are under investigation and are largely derived from observations in syngeneic murine models of cancer which are limited in PC. We evaluate the effect of human PC cells on both muscle wasting and the systemic inflammatory milieu potentially contributing to PC-associated cachexia. Specifically, human PC xenografts were generated by implantation of pancreatic cancer cells, L3.6pl and PANC-1, either in the flank or orthotopically within the pancreas. Mice bearing orthotopic xenografts demonstrated significant muscle wasting and atrophy-associated gene expression changes compared to controls. Further, despite the absence of adaptive immunity, splenic tissue from orthotopically engrafted mice demonstrated elevations in several pro-inflammatory cytokines associated with cancer cachexia, including TNFα, IL1ß, IL6 and KC (murine IL8 homologue), when compared to controls. Therefore, data presented here support further investigation into the complexity of cancer cachexia in PC to identify potential targets for this debilitating syndrome.


Assuntos
Caquexia/etiologia , Caquexia/patologia , Neoplasias Pancreáticas/complicações , Animais , Caquexia/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Xenoenxertos , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fatores de Transcrição , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA