Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458319

RESUMO

Co-delivery of cancer therapeutics improves efficacy and encourages synergy, but delivery faces challenges, including multidrug resistance and spatiotemporal distribution of therapeutics. To address these, we added paclitaxel to previously developed acoustically labile, oxygen-core, surfactant-stabilized microbubbles encapsulating lonidamine, with the aim of developing an agent containing both a therapeutic gas and two drugs acting in combination. Upon comparison of unloaded, single-loaded, and dual-loaded microbubbles, size (~1.7 µm) and yield (~2 × 109 microbubbles/mL) (~1.7) were not statistically different, nor were acoustic properties (maximum in vitro enhancements roughly 18 dB, in vitro enhancements roughly 18 dB). Both drugs encapsulated above required doses calculated for head and neck squamous cell carcinoma, the cancer of choice. Interestingly, paclitaxel encapsulation efficiency increased from 1.66% to 3.48% when lonidamine was included. During preparation, the combination of single drug-loaded micelles gave higher encapsulation (µg drug/g microbubbles) than micelles loaded with either drug alone (lonidamine, 104.85 ± 22.87 vs. 87.54 ± 16.41), paclitaxel (187.35 ± 8.38 vs. 136.51 ± 30.66). In vivo intravenous microbubbles produced prompt ultrasound enhancement within tumors lasting 3-5 min, indicating penetration into tumor vasculature. The ability to locally destroy the microbubble within the tumor vasculature was confirmed using a series of higher intensity ultrasound pulses. This ability to locally destroy microbubbles shows therapeutic promise that warrants further investigation.

2.
Nanotechnology ; 31(18): 185102, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31952056

RESUMO

Current conventional mono and combination therapeutic strategies often fail to target breast cancer tissue effectively due to tumor heterogeneity comprising cancer stem cells (CSCs) and bulk tumor cells. This is further associated with drug toxicity and resistivity in the long run. A nanomedicine platform incorporating combination anti-cancer treatment might overcome these challenges and generate synergistic anti-cancer effects and also reduce drug toxicity. GANT61 and curcumin were co-delivered via polymeric nanoparticles (NPs) for the first time to elicit enhanced anti-tumor activity against heterogeneous breast cancer cell line MCF-7. We adopted the single-emulsion-solvent evaporation method for the preparation of the therapeutic NPs. The GANT61-curcumin PLGA NPs were characterized for their size, shape and chemical properties, and anti-cancer cell studies were undertaken for the plausible explanation of our hypothesis. The synthesized GANT61-curcumin PLGA NPs had a spherical, smooth surface morphology, and an average size of 347.4 d. nm. The NPs induced cytotoxic effects in breast cancer cells at a mid-minimal dosage followed by cell death via autophagy and apoptosis, reduction in their target protein expression along with compromising the self-renewal property of CSCs as revealed by their in vitro cell studies. The dual-drug NPs thus provide a novel perspective on aiding existing anti-cancer nanomedicine therapies to target a heterogeneous tumor mass effectively.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/uso terapêutico , Nanopartículas/química , Fosfatidilinositol 3-Quinases/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Proteína GLI1 em Dedos de Zinco/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/ultraestrutura , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/ultraestrutura , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Camundongos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Piridinas/farmacologia , Pirimidinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Eletricidade Estática
3.
J Tissue Eng Regen Med ; 12(7): 1634-1645, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704314

RESUMO

Cellulosic materials have been of tremendous importance to mankind since its discovery due to its superior properties and its abundance in nature. Recently, an increase in demand for alternate green materials has rekindled the interest for cellulosic materials. Here, bacterial cellulose has been functionalized with sulfate groups through acetosulfation to gain solubility in aqueous media, which provides access to several applications. The cell viability, antioxidant, and hemocompatibility assays have verified the biocompatible and antioxidant characteristics of bacterial cellulose sulfate (BCS) in both in vitro and ex vivo conditions. Further, novel BCS/polyvinyl alcohol nanofibers were fabricated by simple electrospinning route to engineer ultrafine nanoscale fibers. The biological evaluation of BCS/polyvinyl alcohol nanofiber scaffolds was done using L929 mouse fibroblast cells, which confirmed that these nanofibers are excellent matrices for cell adhesion and proliferation.


Assuntos
Celulose/química , Fibroblastos/metabolismo , Teste de Materiais , Nanofibras/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Linhagem Celular , Fibroblastos/citologia , Bacilos Gram-Positivos Asporogênicos Irregulares , Camundongos , Álcool de Polivinil/química
4.
RSC Adv ; 8(57): 32621-32636, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35547672

RESUMO

Morusin, a water-insoluble prenylated flavonoid is known for its numerous medicinal properties. It manifests its anticancer potential by suppression of genes involved in tumor progression. However, poor solubility of the drug results in low bioavailability and rapid degradation thus hindering its clinical utilization. In order to overcome this, we have synthesized a niosome system composed of non-ionic surfactant span 60 and cholesterol using a thin-layer evaporation technique to improve the aqueous-phase solubility of the drug. Highly cytocompatible niosomes of 479 nm average size with smooth and uniform spherical morphology were synthesized in a facile manner. Unlike free morusin, nanomorusin was found to be freely dispersible in aqueous media. Having an extremely high drug entrapment efficiency (97%), controlled and sustained release of morusin resulting in enhanced therapeutic efficacy was observed in cancer cell lines of 4 different lineages. The results demonstrate that the morusin-niosome system is a promising strategy for enhanced anti-cancer activity against multiple cancer types and could be an indispensable tool for future targeted chemotherapeutic strategies.

5.
Materials (Basel) ; 10(8)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796191

RESUMO

Biodegradable polymers are popularly being used in an increasing number of fields in the past few decades. The popularity and favorability of these materials are due to their remarkable properties, enabling a wide range of applications and market requirements to be met. Polymer biodegradable systems are a promising arena of research for targeted and site-specific controlled drug delivery, for developing artificial limbs, 3D porous scaffolds for cellular regeneration or tissue engineering and biosensing applications. Several natural polymers have been identified, blended, functionalized and applied for designing nanoscaffolds and drug carriers as a prerequisite for enumerable bionano technological applications. Apart from these, natural polymers have been well studied and are widely used in material science and industrial fields. The present review explains the prominent features of commonly used natural polymers (polysaccharides and proteins) in various nanomedical applications and reveals the current status of the polymer research in bionanotechnology and science sectors.

6.
Int J Pharm ; 511(1): 648-658, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27469073

RESUMO

Heat Shock Protein 90 (Hsp90) has been extensively explored as a potential drug target for cancer therapies. 17- N-allylamino- 17-demethoxygeldanamycin (17AAG) was the first Hsp90 inhibitor to enter clinical trials for cancer therapy. However, native drug is being shown to have considerable anticancer efficacy against pancreatic cancer when used in combination therapy regime. Further, magnetic hyperthermia has shown to have promising effects against pancreatic cancer in combination with known cyto-toxic drugs under both target and non-targeted scenarios. Hence, in order to enhance the efficacy of 17AAG against pancreatic cancer, we developed poly (lactic-co-glycolic acid) (PLGA) coated, 17AAG and Fe3O4 loaded magnetic nanoparticle formulations by varying the relative concentration of polymer. We found that polymer concentration affects the magnetic strength and physicochemical properties of formulation. We were also able to see that our aqueous dispensable formulations were able to provide anti-pancreatic cancer activity for MIA PaCa-2 cell line in dose and time dependent manner in comparison to mice fibroblast cell lines (L929). Moreover, the in-vitro magnetic hyperthermia against MIA PaCa-2 provided proof principle that our 2-in-1 particles may work against cancer cell lines effectively.


Assuntos
Compostos Férricos/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Nanopartículas/metabolismo , Neoplasias Pancreáticas/metabolismo , Polímeros/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Composição de Medicamentos/métodos , Compostos Férricos/administração & dosagem , Proteínas de Choque Térmico HSP90/química , Humanos , Camundongos , Nanopartículas/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Polímeros/administração & dosagem , Estrutura Secundária de Proteína
7.
J Pharm Sci ; 105(4): 1454-66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26886301

RESUMO

Suboptimal chemotherapy of anticancer drugs may be attributed to a variety of cellular mechanisms, which synergize to dodge the drug responses. Nearly 2 decades of heat-shock protein 90 (Hsp90)-targeted drug discovery has shown that the mono-therapy with Hsp90 inhibitors seems to be relatively ineffective compared with combination treatment due to several cellular dodging mechanisms. In this article, we have tried to analyze and review the Hsp90 and mammalian target of rapamycin (m-TOR)-mediated drug resistance mechanisms. By using this information we have discussed about the rationale behind use of drug combinations that includes both or any one of these inhibitors for cancer therapy. Currently, biodegradable nano vector (NV)-loaded novel drug delivery systems have shown to resolve the problems of poor bioavailability. NVs of drugs such as paclitaxel, doxorubicin, daunorubicin, and others have been successfully introduced for medicinal use. Hence, looking at the success of NVs, in this article we have also discussed the progress made in the delivery of biodegradable NV-loaded Hsp90 and m-TOR-targeted inhibitors in multiple drug combinations. We have also discussed the possible ways by which the market success of biodegradable NVs can positively impact the clinical trials of anti-Hsp90 and m-TOR combination strategy.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Neoplasias/metabolismo
8.
Parasitology ; 141(9): 1148-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24912527

RESUMO

Trypanosomiasis is caused by Trypanosoma species which affect both human and animal populations and pose a major threat to developing countries. The incidence of animal trypanosomiasis is on the rise. Surra is a type of animal trypanosomiasis, caused by Trypanosoma evansi, and has been included in priority list B of significant diseases by the World Organization of Animal Health (OIE). Control of surra has been a challenge due to the lack of effective drugs and vaccines and emergence of resistance towards existing drugs. Our laboratory has previously implicated Heat shock protein 90 (Hsp90) from protozoan parasites as a potential drug target and successfully demonstrated efficacy of an Hsp90 inhibitor in cell culture as well as a pre-clinical mouse model of trypanosomiasis. This article explores the role of Hsp90 in the Trypanosoma life cycle and its potential as a drug target. It appears plausible that the repertoire of Hsp90 inhibitors available in academia and industry may have value for treatment of surra and other animal trypanosomiasis.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Animais , Humanos , Camundongos , Estrutura Molecular , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tripanossomicidas/química , Trypanosoma/metabolismo
9.
Curr Pharm Des ; 19(3): 377-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22920905

RESUMO

Combating stress is one of the prime requirements for any organism. For parasitic microbes, stress levels are highest during the growth inside the host. Their survival depends on their ability to acclimatize and adapt to new environmental conditions. Robust cellular machinery for stress response is, therefore, both critical and essential especially for pathogenic microorganisms. Microbes have cleverly exploited stress proteins as virulence factors for pathogenesis in their hosts. Owing to its ability to sense and respond to the stress conditions, Heat shock protein 90 (Hsp90) is one of the key stress proteins utilized by parasitic microbes. There are growing evidences for the critical role played by Hsp90 in the growth of pathogenic organisms like Candida, Giardia, Plasmodium, Trypanosoma, and others. This review, therefore, explores potential of exploiting Hsp90 as a target for the treatment of infectious diseases. This molecular chaperone has already gained attention as an effective anti-cancer drug target. As a result, a lot of research has been done at laboratory, preclinical and clinical levels for several Hsp90 inhibitors as potential anti-cancer drugs. In addition, lot of data pertaining to toxicity studies, pharmacokinetics and pharmacodynamics studies, dosage regime, drug related toxicities, dose limiting toxicities as well as adverse drug reactions are available for Hsp90 inhibitors. Therefore, repurposing/ repositioning strategies are also being explored for these compounds which have gone through advanced stage clinical trials. This review presents a comprehensive summary of current status of development of Hsp90 as a drug target and its inhibitors as candidate anti-infectives. A particular emphasis is laid on the possibility of repositioning strategies coupled with pharmaceutical solutions required for fulfilling needs for ever growing pharmaceutical infectious disease market.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Doenças Transmissíveis/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Animais , Anti-Infecciosos/uso terapêutico , Doenças Transmissíveis/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA