Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(28)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38579688

RESUMO

Spatially resolved x-ray fluorescence (XRF) based analysis employing incident beam sizes in the low micrometer range (µXRF) is widely used to study lateral composition changes of various types of microstructured samples. However, up to now the quantitative analysis of such experimental datasets could only be realized employing adequate calibration or reference specimen. In this work, we extent the applicability of the so-called reference-free XRF approach to enable reference-freeµXRF analysis. Here, no calibration specimen are needed in order to derive a quantitative and position sensitive composition of the sample of interest. The necessary instrumental steps to realize reference-freeµXRF are explained and a validation of ref.-freeµXRF against ref.-free standard XRF is performed employing laterally homogeneous samples. Finally, an application example from semiconductor research is shown, where the lateral sample features require the usage of ref.-freeµXRF for quantitative analysis.

2.
ACS Nano ; 18(18): 11886-11897, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651233

RESUMO

We study the origin of bimodal emission in AlGaN/AlN QD superlattices displaying a high internal quantum efficiency (around 50%) in the 230-300 nm spectral range. The secondary emission at longer wavelengths is linked to the presence of cone-like domains with deformed QD layers, which originate at the first AlN buffer/superlattice interface and propagate vertically. The cones originate at a 30°-faceted shallow pit in the AlN, which appears to be associated with a threading dislocation that produces strong shear strain. The cone-like structures present Ga enrichment at the boundaring facets and larger QDs within the conic domain. The bimodality of the luminescence is attributed to the differing dot size and composition within the cones and at the faceted boundaries, which is confirmed by the correlation of microscopy results and Schrödinger-Poisson calculations.

3.
Microsc Microanal ; 29(2): 451-458, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37749721

RESUMO

By collecting simultaneously optical and chemical/morphological data from nanoscale volumes, the Photonic Atom Probe (PAP) can be applied not only to the study of the relationship between optical and structural properties of quantum emitter but also to evaluate the influence of other factors, such as the presence of point defects, on the photoluminescence. Through the analysis of multiple layers of InGaN/GaN quantum dots (QDs), grown so that the density of structural defects is higher with increasing distance from the substrate, we establish that the light emission is higher in the regions exhibiting a higher presence of structural defects. While the presence of intrinsic point defects with non-radiative recombination properties remains elusive, our result is consistent with the fact that QD layers closer to the substrate behave as traps for non-radiative point defects. This result demonstrates the potential of the PAP as a technique for the study of the optical properties of defects in semiconductors.

4.
Nanotechnology ; 34(49)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37640021

RESUMO

In order to elucidate the mechanisms responsible for cathodoluminescence intensity variations at the scale of single InGaN/GaN nanowire heterostructures, a methodology is proposed based on a statistical analysis on ensembles of several hundreds of nanowires exhibiting a diameter of 180, 240 and 280 nm. For 180 nm diameter, we find that intensitiy variations are consistent with incorporation of point defects obeying Poisson's statistics. For wider diameters, intensity variations at the scale of single NWs are observed and assigned to local growth conditions fluctuations. Finally, for the less luminescent nanowires, a departure from Poisson's statistics is observed suggesting the possible clustering of non independent point defects.

5.
Nanotechnology ; 32(19): 195203, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33429383

RESUMO

Planar UV-C light emitting diodes still suffer from low efficiency, mainly due to substrate crystalline quality, p doped conductivity and extraction efficiency. One possible way to overcome partly these issues is to realize the whole UV structure on AlGaN pyramids by selective area growth in order to benefit from the advantages of such structures, i.e. the dislocation filtering and the semi polar planes. We present here a detailed study about the epitaxy of AlGaN nano-sized pyramids by metal organic vapor phase epitaxy on patterned templates presenting different holes apertures and pitches as 1.5 µm and 4 µm or 100 nm and 250 nm respectively. While increasing the Al content, their height decreases while the thickness of the deposition on the mask increases whatever the design of the mask. Those changes of the pyramid shapes and deposition are directly linked to the properties of Al adatoms, i.e. low Al diffusion length. Using the conventional growth mode for the epitaxy of those pyramids did not permit the incorporation of Al from the base of the pyramids to their truncated apex. Its presence was concentrated on the edges and top of the pyramids. On the contrary, a pulsed growth mode, coupled with a strongly reduced pitch, allowed an incorporation of Al since the base of the nanopyramid, and a decrease of the deposition height on the mask. These results can be explained by the desorption of Ga species, due to the presence of H2 in the reactor chamber during the step without the metal precursors, leading to a higher Al/Ga ratio. It is even enhanced inside the holes by the reduced pitch.

6.
Opt Lett ; 43(15): 3505-3508, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067695

RESUMO

We investigated deformation of InP that was introduced by thin, narrow, dielectric SiNx stripes on the (100) surface of InP substrates. Quantitative optical measurements were performed using two different techniques based on luminescence from the InP: first, by degree of polarization of photoluminescence; and second, by cathodoluminescence spectroscopy. The two techniques provide complementary information on deformation of the InP and thus together provide a means to evaluate approaches to simulation of the deformation owing to dielectric stripes. Ultimately, these deformations can be used to estimate changes in refractive index and gain that are a result of the stripes.

7.
ACS Appl Mater Interfaces ; 9(23): 20179-20187, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28534397

RESUMO

Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 1020 cm-3. Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.

8.
Opt Express ; 25(5): 5488-5500, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380809

RESUMO

We report on the cathodoluminescence characterization of Au, Al and a Au/Al bimetal circular plasmonic patch antennas, with disk diameter ranging from 150 to 900 nm. It allows us access to monomode operation of the antennas down to the fundamental dipolar mode, in contrast to previous studies on similar systems. Moreover we show that we can shift the operation range of the antennas towards the blue spectral range by using Al. Our experimental results are compared to a semi-analytical model that provides qualitative insight on the mode structure sustained by the antennas.

9.
Chemistry ; 21(45): 16047-58, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26395201

RESUMO

Silicon nanoparticles (NPs) serve a wide range of optical, electronic, and biological applications. Chemical grafting of various molecules to Si NPs can help to passivate their reactive surfaces, "fine-tune" their properties, or even give them further interesting features. In this work, (1) H, (13) C, and (29) Si solid-state NMR spectroscopy has been combined with density functional theory calculations to study the surface chemistry of hydride-terminated and alkyl-functionalized Si NPs. This combination of techniques yields assignments for the observed chemical shifts, including the contributions resulting from different surface planes, and highlights the presence of physisorbed water. Resonances from near-surface (13) C nuclei were shown to be substantially broadened due to surface disorder and it is demonstrated that in an ambient environment hydride-terminated Si NPs undergo fast back-bond oxidation, whereas long-chain alkyl-functionalized Si NPs undergo slow oxidation. Furthermore, the combination of NMR spectroscopy and DFT calculations showed that the employed hydrosilylation reaction involves anti-Markovnikov addition of the 1-alkene to the surface of the Si NPs.

10.
Appl Spectrosc ; 65(9): 1046-50, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21929859

RESUMO

Attenuated total reflection (ATR) infrared absorption spectroscopy is a well-known vibrational spectroscopy technique for many different applications. In recent years this technique has been used to detect thin layer(s) lying on a solid substrate. Such a sample needs high pressure to ensure good optical contact between sample and prism and a p-polarization to enhance the signal to be detected. Such conditions have not been detailed in the literature regarding the effect of high pressure on the ATR measurement. This study shows the detrimental effect of high pressure on the ATR spectra. This effect is related to light depolarization induced by the germanium prism under high pressure. Moreover, the importance of polarizer position in the optical bench is highlighted. Indeed, due to the pressure-induced depolarization of the prism, the polarizer has to be placed before the prism to limit undesirable effects on the ATR spectrum baseline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA