Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Anim Microbiome ; 6(1): 16, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528597

RESUMO

Urbanization significantly impacts wild populations, favoring urban dweller species over those that are unable to adapt to rapid changes. These differential adaptative abilities could be mediated by the microbiome, which may modulate the host phenotype rapidly through a high degree of flexibility. Conversely, under anthropic perturbations, the microbiota of some species could be disrupted, resulting in dysbiosis and negative impacts on host fitness. The links between the impact of urbanization on host communities and their gut microbiota (GM) have only been scarcely explored. In this study, we tested the hypothesis that the bacterial composition of the GM could play a role in host adaptation to urban environments. We described the GM of several species of small terrestrial mammals sampled in forested areas along a gradient of urbanization, using a 16S metabarcoding approach. We tested whether urbanization led to changes in small mammal communities and in their GM, considering the presence and abundance of bacterial taxa and their putative functions. This enabled to decipher the processes underlying these changes. We found potential impacts of urbanization on small mammal communities and their GM. The urban dweller species had a lower bacterial taxonomic diversity but a higher functional diversity and a different composition compared to urban adapter species. Their GM assembly was mostly governed by stochastic effects, potentially indicating dysbiosis. Selection processes and an overabundance of functions were detected that could be associated with adaptation to urban environments despite dysbiosis. In urban adapter species, the GM functional diversity and composition remained relatively stable along the urbanization gradient. This observation can be explained by functional redundancy, where certain taxa express the same function. This could favor the adaptation of urban adapter species in various environments, including urban settings. We can therefore assume that there are feedbacks between the gut microbiota and host species within communities, enabling rapid adaptation.

2.
Infect Genet Evol ; 120: 105589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548211

RESUMO

BACKGROUND: Progress in lymphatic filariasis (LF) elimination is spatially heterogeneous in many endemic countries, which may lead to resurgence in areas that have achieved elimination. Understanding the drivers and consequences of such heterogeneity could help inform strategies to reach global LF elimination goals by 2030. This study assesses whether differences in age-specific compliance with mass drug administration (MDA) could explain LF prevalence patterns in southeastern Madagascar and explores how spatial heterogeneity in prevalence and age-specific MDA compliance may affect the risk of LF resurgence after transmission interruption. METHODOLOGY: We used LYMFASIM model with parameters in line with the context of southeastern Madagascar and explored a wide range of scenarios with different MDA compliance for adults and children (40-100%) to estimate the proportion of elimination, non-elimination and resurgence events associated with each scenario. Finally, we evaluated the risk of resurgence associated with different levels of migration (2-6%) from surrounding districts combined with varying levels of LF microfilaria (mf) prevalence (0-24%) during that same study period. RESULTS: Differences in MDA compliance between adults and children better explained the observed heterogeneity in LF prevalence for these age groups than differences in exposure alone. The risk of resurgence associated with differences in MDA compliance scenarios ranged from 0 to 19% and was highest when compliance was high for children (e.g. 90%) and low for adults (e.g. 50%). The risk of resurgence associated with migration was generally higher, exceeding 60% risk for all the migration levels explored (2-6% per year) when mf prevalence in the source districts was between 9% and 20%. CONCLUSION: Gaps in the implementation of LF elimination programme can increase the risk of resurgence and undermine elimination efforts. In Madagascar, districts that have not attained elimination pose a significant risk for those that have achieved it. More research is needed to help guide LF elimination programme on the optimal strategies for surveillance and control that maximize the chances to sustain elimination and avoid resurgence.


Assuntos
Erradicação de Doenças , Filariose Linfática , Administração Massiva de Medicamentos , Humanos , Madagáscar/epidemiologia , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Adulto , Criança , Adolescente , Prevalência , Erradicação de Doenças/métodos , Pré-Escolar , Feminino , Adulto Jovem , Masculino , Pessoa de Meia-Idade , Filaricidas/uso terapêutico , Animais
3.
Evol Appl ; 17(3): e13670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468711

RESUMO

Since the emergence of a transmissible cancer, devil facial tumour disease (DFT1), in the 1980s, wild Tasmanian devil populations have been in decline. In 2016, a second, independently evolved transmissible cancer (DFT2) was discovered raising concerns for survival of the host species. Here, we applied experimental and modelling frameworks to examine competition dynamics between the two transmissible cancers in vitro. Using representative cell lines for DFT1 and DFT2, we have found that in monoculture, DFT2 grows twice as fast as DFT1 but reaches lower maximum cell densities. Using co-cultures, we demonstrate that DFT2 outcompetes DFT1: the number of DFT1 cells decreasing over time, never reaching exponential growth. This phenomenon could not be replicated when cells were grown separated by a semi-permeable membrane, consistent with exertion of mechanical stress on DFT1 cells by DFT2. A logistic model and a Lotka-Volterra competition model were used to interrogate monoculture and co-culture growth curves, respectively, suggesting DFT2 is a better competitor than DFT1, but also showing that competition outcomes might depend on the initial number of cells, at least in the laboratory. We provide theories how the in vitro results could be translated to observations in the wild and propose that these results may indicate that although DFT2 is currently in a smaller geographic area than DFT1, it could have the potential to outcompete DFT1. Furthermore, we provide a framework for improving the parameterization of epidemiological models applied to these cancer lineages, which will inform future disease management.

5.
Pathogens ; 12(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38133304

RESUMO

Arboviruses, i.e., viruses transmitted by blood-sucking arthropods, trigger significant global epidemics. Over the past 20 years, the frequency of the (re-)emergence of these pathogens, particularly those transmitted by Aedes and Culex mosquitoes, has dramatically increased. Therefore, understanding how human behavior is modulating population exposure to these viruses is of particular importance. This synthesis explores human behavioral factors driving human exposure to arboviruses, focusing on household surroundings, socio-economic status, human activities, and demographic factors. Household surroundings, such as the lack of water access, greatly influence the risk of arbovirus exposure by promoting mosquito breeding in stagnant water bodies. Socio-economic status, such as low income or low education, is correlated to an increased incidence of arboviral infections and exposure. Human activities, particularly those practiced outdoors, as well as geographical proximity to livestock rearing or crop cultivation, inadvertently provide favorable breeding environments for mosquito species, escalating the risk of virus exposure. However, the effects of demographic factors like age and gender can vary widely through space and time. While climate and environmental factors crucially impact vector development and viral replication, household surroundings, socio-economic status, human activities, and demographic factors are key drivers of arbovirus exposure. This article highlights that human behavior creates a complex interplay of factors influencing the risk of mosquito-borne virus exposure, operating at different temporal and spatial scales. To increase awareness among human populations, we must improve our understanding of these complex factors.

6.
Microb Genom ; 9(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112714

RESUMO

In Mexico, the BA.4 and BA.5 Omicron variants dominated the fifth epidemic wave (summer 2022), superseding BA.2, which had circulated during the inter-wave period. The present study uses genome sequencing and statistical and phylogenetic analyses to examine these variants' abundance, distribution, and genetic diversity in Mexico from April to August 2022. Over 35 % of the sequenced genomes in this period corresponded to the BA.2 variant, 8 % to the BA.4 and 56 % to the BA.5 variant. Multiple subvariants were identified, but the most abundant, BA.2.9, BA.2.12.1, BA.5.1, BA.5.2, BA.5.2.1 and BA.4.1, circulated across the entire country, not forming geographical clusters. Contrastingly, other subvariants exhibited a geographically restricted distribution, most notably in the Southeast region, which showed a distinct subvariant dynamic. This study supports previous results showing that this region may be a significant entry point and contributed to introducing and evolving novel variants in Mexico. Furthermore, a differential distribution was observed for certain subvariants among specific States through time, which may have contributed to the overall increased diversity observed during this wave compared to the previous ones. This study highlights the importance of sustaining genomic surveillance to identify novel variants that may impact public health.


Assuntos
COVID-19 , Humanos , México/epidemiologia , COVID-19/epidemiologia , Filogenia , SARS-CoV-2/genética
7.
Sci Rep ; 13(1): 19825, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963956

RESUMO

The inability to control cell proliferation results in the formation of tumors in many multicellular lineages. Nonetheless, little is known about the extent of conservation of the biological traits and ecological factors that promote or inhibit tumorigenesis across the metazoan tree. Particularly, changes in food availability have been linked to increased cancer incidence in humans, as an outcome of evolutionary mismatch. Here, we apply evolutionary oncology principles to test whether food availability, regardless of the multicellular lineage considered, has an impact on tumorigenesis. We used two phylogenetically unrelated model systems, the cnidarian Hydra oligactis and the fish Danio rerio, to investigate the impact of resource availability on tumor occurrence and progression. Individuals from healthy and tumor-prone lines were placed on four diets that differed in feeding frequency and quantity. For both models, frequent overfeeding favored tumor emergence, while lean diets appeared more protective. In terms of tumor progression, high food availability promoted it, whereas low resources controlled it, but without having a curative effect. We discuss our results in light of current ideas about the possible conservation of basic processes governing cancer in metazoans (including ancestral life history trade-offs at the cell level) and in the framework of evolutionary medicine.


Assuntos
Cnidários , Hydra , Neoplasias , Animais , Humanos , Evolução Biológica , Carcinogênese , Neoplasias/etiologia
8.
Vector Borne Zoonotic Dis ; 23(10): 537-543, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579044

RESUMO

Background: It is well established that infection patterns in nature can be driven by host, vector, and symbiont communities. One of the first stages in understanding how these complex systems have influenced the incidence of vector-borne diseases is to recognize what are the major vertebrate (i.e., hosts) and invertebrate (i.e., vectors) host species that propagate those microbes. Such identification opens the possibility to identify such essential species to develop targeted preventive efforts. Methods: The goal of this study, which relies on a compilation of a global database based on published literature, is to identify relevant host species in the global transmission of mosquito-borne flaviviruses, such as West Nile virus, St. Louis virus, Dengue virus, and Zika virus, which pose a concern to animal and public health. Results: The analysis of the resulting database involving 1174 vertebrate host species and 46 reported vector species allowed us to establish association networks between these species. Three host species (Mus musculus, Sapajus flavius, Sapajus libidinosus, etc.) have a much larger centrality values, suggesting that they play a key role in flavivirus community interactions. Conclusion: The methods used and the species detected as relevant in the network provide new knowledge and consistency that could aid health officials in rethinking prevention and control strategies with a focus on viral communities and their interactions. Other infectious diseases that harm animal and human health could benefit from such network techniques.

9.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503269

RESUMO

Meiotic drivers subvert Mendelian expectations by manipulating reproductive development to bias their own transmission. Chromosomal drive typically functions in asymmetric female meiosis, while gene drive is normally postmeiotic and typically found in males. Using single molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Zea mays ssp. mexicana), that depends on RNA interference (RNAi). 22nt small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-Like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1, and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize. A survey of maize landraces and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least 4 chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive likely played a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of "self" small RNAs in the germlines of plants and animals.

10.
Evol Appl ; 16(7): 1316-1327, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37492149

RESUMO

Infectious diseases are a major threat for biodiversity conservation and can exert strong influence on wildlife population dynamics. Understanding the mechanisms driving infection rates and epidemic outcomes requires empirical data on the evolutionary trajectory of pathogens and host selective processes. Phylodynamics is a robust framework to understand the interaction of pathogen evolutionary processes with epidemiological dynamics, providing a powerful tool to evaluate disease control strategies. Tasmanian devils have been threatened by a fatal transmissible cancer, devil facial tumour disease (DFTD), for more than two decades. Here we employ a phylodynamic approach using tumour mitochondrial genomes to assess the role of tumour genetic diversity in epidemiological and population dynamics in a devil population subject to 12 years of intensive monitoring, since the beginning of the epidemic outbreak. DFTD molecular clock estimates of disease introduction mirrored observed estimates in the field, and DFTD genetic diversity was positively correlated with estimates of devil population size. However, prevalence and force of infection were the lowest when devil population size and tumour genetic diversity was the highest. This could be due to either differential virulence or transmissibility in tumour lineages or the development of host defence strategies against infection. Our results support the view that evolutionary processes and epidemiological trade-offs can drive host-pathogen coexistence, even when disease-induced mortality is extremely high. We highlight the importance of integrating pathogen and population evolutionary interactions to better understand long-term epidemic dynamics and evaluating disease control strategies.

11.
Evol Appl ; 16(7): 1239-1256, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37492150

RESUMO

It is traditionally assumed that during cancer development, tumor cells abort their initially cooperative behavior (i.e., cheat) in favor of evolutionary strategies designed solely to enhance their own fitness (i.e., a "selfish" life style) at the expense of that of the multicellular organism. However, the growth and progress of solid tumors can also involve cooperation among these presumed selfish cells (which, by definition, should be noncooperative) and with stromal cells. The ultimate and proximate reasons behind this paradox are not fully understood. Here, in the light of current theories on the evolution of cooperation, we discuss the possible evolutionary mechanisms that could explain the apparent cooperative behaviors among selfish malignant cells. In addition to the most classical explanations for cooperation in cancer and in general (by-product mutualism, kin selection, direct reciprocity, indirect reciprocity, network reciprocity, group selection), we propose the idea that "greenbeard" effects are relevant to explaining some cooperative behaviors in cancer. Also, we discuss the possibility that malignant cooperative cells express or co-opt cooperative traits normally expressed by healthy cells. We provide examples where considerations of these processes could help understand tumorigenesis and metastasis and argue that this framework provides novel insights into cancer biology and potential strategies for cancer prevention and treatment.

12.
Lancet Glob Health ; 11(8): e1301-e1307, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474236

RESUMO

The COVID-19 pandemic has shown the need for better global governance of pandemic prevention, preparedness, and response (PPR) and has emphasised the importance of organised knowledge production and uptake. In this Health Policy, we assess the potential values and risks of establishing an Intergovernmental Panel for One Health (IPOH). Similar to the Intergovernmental Panel on Climate Change, an IPOH would facilitate knowledge uptake in policy making via a multisectoral approach, and hence support the addressing of infectious disease emergence and re-emergence at the human-animal-environment interface. The potential benefits to pandemic PPR include a clear, unified, and authoritative voice from the scientific community, support to help donors and institutions to prioritise their investments, evidence-based policies for implementation, and guidance on defragmenting the global health system. Potential risks include a scope not encompassing all pandemic origins, unclear efficacy in fostering knowledge uptake by policy makers, potentially inadequate speed in facilitating response efforts, and coordination challenges among an already dense set of stakeholders. We recommend weighing these factors when designing institutional reforms for a more effective global health system.


Assuntos
COVID-19 , Saúde Única , Animais , Humanos , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Política de Saúde , Formulação de Políticas
13.
Ecohealth ; 20(2): 156-164, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37477763

RESUMO

Human pressure on the environment is increasing the frequency, diversity, and spatial extent of disease outbreaks. Despite international recognition, the interconnection between the health of the environment, animals, and humans has been historically overlooked. Past and current initiatives have often neglected prevention under the One Health preparedness cycle, largely focusing on post-spillover stages. We argue that pandemic prevention initiatives have yet to produce actionable targets and indicators, connected to overarching goals, like it has been done for biodiversity loss and climate change. We show how the Driver-Pressure-State-Impact-Response framework, already employed by the Convention on Biological Diversity, can be repurposed to operationalize pandemic prevention. Global responses for pandemic prevention should strive for complementarity and synergies among initiatives, better articulating prevention under One Health. Without agreed-upon goals underpinning specific targets and interventions, current global efforts are unlikely to function at the speed and scale necessary to decrease the risk of disease outbreaks that might lead to pandemics. Threats to the environment are not always abatable, but decreasing the likelihood that environmental pressure leads to pandemics, and developing strategies to mitigate these impacts, are both attainable goals.


Assuntos
Saúde Única , Pandemias , Animais , Humanos , Pandemias/prevenção & controle , Surtos de Doenças/prevenção & controle , Biodiversidade
14.
Infection ; 51(5): 1549-1555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37058241

RESUMO

PURPOSE: The swift expansion of the BW.1 SARS-CoV-2 variant coincided with a rapid increase of COVID-19 cases occurring in Southeast Mexico in October, 2022, which marked the start of Mexico's sixth epidemiological wave. In Yucatan, up to 92% (58 of 73) of weekly sequenced genomes between epidemiological week 42 and 47 were identified as either BW.1 or its descendant, BW.1.1 in the region, during the last trimester of 2022. In the current study, a comprehensive genomic comparison was carried out to characterize the evolutionary history of the BW lineage, identifying its origins and its most important mutations. METHODS: An alignment of all the genomes of the BW lineage and its parental BA.5.6.2 variant was carried out to identify their mutations. A phylogenetic and ancestral sequence reconstruction analysis with geographical inference, as well as a longitudinal analysis of point mutations, were performed to trace back their origin and contrast them with key RBD mutations in variant BQ.1, one of the fastest-growing lineages to date. RESULTS: Our ancestral reconstruction analysis portrayed Mexico as the most probable origin of the BW.1 and BW.1.1 variants. Two synonymous substitutions, T7666C and C14599T, support their Mexican origin, whereas other two mutations are specific to BW.1: S:N460K and ORF1a:V627I. Two additional substitutions and a deletion are found in its descending subvariant, BW.1.1. Mutations found in the receptor binding domain, S:K444T, S:L452R, S:N460K, and S:F486V in BW.1 have been reported to be relevant for immune escape and are also key mutations in the BQ.1 lineage. CONCLUSIONS: BW.1 appears to have arisen in the Yucatan Peninsula in Southeast Mexico sometime around July 2022 during the fifth COVID-19 wave. Its rapid growth may be in part explained by the relevant escape mutations also found in BQ.1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , México/epidemiologia , COVID-19/epidemiologia , Filogenia , Mutação
15.
J Infect Dis ; 228(9): 1189-1197, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36961853

RESUMO

BACKGROUND: Targeted surveillance allows public health authorities to implement testing and isolation strategies when diagnostic resources are limited, and can be implemented via the consideration of social network topologies. However, it remains unclear how to implement such surveillance and control when network data are unavailable. METHODS: We evaluated the ability of sociodemographic proxies of degree centrality to guide prioritized testing of infected individuals compared to known degree centrality. Proxies were estimated via readily available sociodemographic variables (age, gender, marital status, educational attainment, household size). We simulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics via a susceptible-exposed-infected-recovered individual-based model on 2 contact networks from rural Madagascar to test applicability of these findings to low-resource contexts. RESULTS: Targeted testing using sociodemographic proxies performed similarly to targeted testing using known degree centralities. At low testing capacity, using proxies reduced infection burden by 22%-33% while using 20% fewer tests, compared to random testing. By comparison, using known degree centrality reduced the infection burden by 31%-44% while using 26%-29% fewer tests. CONCLUSIONS: We demonstrate that incorporating social network information into epidemic control strategies is an effective countermeasure to low testing capacity and can be implemented via sociodemographic proxies when social network data are unavailable.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Saúde Pública , Suscetibilidade a Doenças
16.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680283

RESUMO

PURPOSE: The Omicron subvariant BA.1 of SARS-CoV-2 was first detected in November 2021 and quickly spread worldwide, displacing the Delta variant. In this work, a characterization of the spread of this variant in Mexico is presented. METHODS: The time to fixation of BA.1, the diversity of Delta sublineages, the population density, and the level of virus circulation during the inter-wave interval were determined to analyze differences in BA.1 spread. RESULTS: BA.1 began spreading during the first week of December 2021 and became dominant in the next three weeks, causing the fourth COVID-19 epidemiological surge in Mexico. Unlike previous variants, BA.1 did not exhibit a geographically distinct circulation pattern. However, a regional difference in the speed of the replacement of the Delta variant was observed. CONCLUSIONS: Viral diversity and the relative abundance of the virus in a particular area around the time of the introduction of a new lineage seem to have influenced the spread dynamics, in addition to population density. Nonetheless, if there is a significant difference in the fitness of the variants, or if the time allowed for the competition is sufficiently long, it seems the fitter virus will eventually become dominant, as observed in the eventual dominance of the BA.1.x variant in Mexico.


Assuntos
COVID-19 , Epidemias , Humanos , México/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética
17.
Front Vet Sci ; 9: 1057686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504864

RESUMO

Backyard animal husbandry is common in rural communities in developing countries and, given the conditions in which it occurs, it can increase the risk of disease transmission, such as arboviruses. To determine the presence of the Zika virus (ZIKV) and abundance of its arthropod vectors we evaluated the socioeconomic implications involved in its transmission in two highly vulnerable Mayan communities in the state of Yucatan that practice backyard farming. An analytical cross-sectional study was carried out throughout 2016 to understand socioeconomic variables and seasonal patterns in mosquito populations. We selected 20 households from each community. Social exclusion indicators were analyzed, human and domestic animals were sampled, and mosquitoes were collected and identified. Four out of eight indicators of social exclusion were higher than the reported national averages. We captured 5,825 mosquitoes from 16 species being Culex quinquefasciatus and Aedes aegypti the most abundant. The presence of chickens and human overcrowding in dwellings were the most significant factors (P = 0.026) associated with the presence of Ae. aegypti. Septic tanks (odds ratio = 6.64) and chickens (odds ratio = 27.41) in backyards were the main risk factors associated with the presence of immature states of Ae. aegypti in both communities. Molecular analysis to detect ZIKV was performed in blood samples from 416 humans, 1,068 backyard animals and 381 mosquito pools. Eighteen humans and 10 pig pools tested positive for ZIKV. Forty-three mosquito pools tested positive for flavivirus. Ten of the 43 pools of positive mosquitoes were sequenced, corresponding 3/10 to ZIKV and 1/10 to Dengue virus type 2. The findings obtained indicate the continuous circulation of Flavivirus (including ZIKV) in backyard environments in vulnerable communities, highlighting the importance of studying their transmission and maintenance in these systems, due that backyard animal husbandry is a common practice in these vulnerable communities with limited access to health services.

18.
BMC Infect Dis ; 22(1): 815, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36324075

RESUMO

BACKGROUND: SARS-CoV-2 is a rapidly spreading disease affecting human life and the economy on a global scale. The disease has caused so far more then 5.5 million deaths. The omicron outbreak that emerged in Botswana in the south of Africa spread around the globe at further increased rates, and caused unprecedented SARS-CoV-2 infection incidences in several countries. At the start of December 2021 the first omicron cases were reported in France. METHODS: In this paper we investigate the spreading potential of this novel variant relatively to the delta variant that was also in circulation in France at that time. Using a dynamic multi-variant model accounting for cross-immunity through a status-based approach, we analyze screening data reported by Santé Publique France over 13 metropolitan French regions between 1st of December 2021 and the 30th of January 2022. During the investigated period, the delta variant was replaced by omicron in all metropolitan regions in approximately three weeks. The analysis conducted retrospectively allows us to consider the whole replacement time window and compare regions with different times of omicron introduction and baseline levels of variants' transmission potential. As large uncertainties regarding cross-immunity among variants persist, uncertainty analyses were carried out to assess its impact on our estimations. RESULTS: Assuming that 80% of the population was immunized against delta, a cross delta/omicron cross-immunity of 25% and an omicron generation time of 3.5 days, the relative strength of omicron to delta, expressed as the ratio of their respective reproduction rates, [Formula: see text], was found to range between 1.51 and 1.86 across regions. Uncertainty analysis on epidemiological parameters led to [Formula: see text] ranging from 1.57 to 2.34 on average over the metropolitan French regions, weighted by population size. CONCLUSIONS: Upon introduction, omicron spread rapidly through the French territory and showed a high fitness relative to delta. We documented considerable geographical heterogeneities on the spreading dynamics. The historical reconstruction of variant emergence dynamics provide valuable ground knowledge to face future variant emergence events.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Retrospectivos , COVID-19/epidemiologia , Botsuana
19.
Salud Publica Mex ; 64(5, sept-oct): 478-487, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36130361

RESUMO

OBJECTIVE: Evaluate spatially and temporally simultaneous presence of clusters of dengue and Zika clinical cases and their relationship with expected dengue transmission risk. MATERIALS AND METHODS: A classification of dengue risk transmission was carried out for whole country, and spatial autocorrelation analyses to identify clusters of confirmed clinical cases of dengue and Zika from 2015 to 2018 was conducted using Moran's Index statistics. RESULTS: Clusters of both diseases were identified in dengue-high risk munici-palities at the beginning of the outbreak, but, at the end of the outbreak, Zika clusters occurred in dengue low-risk mu-nicipalities. CONCLUSION: This study identified Zika clusters in low-risk dengue areas suggesting participation of several factors that favor virus introduction and dissemination, such as differences in entomological and control interventions, and the possibility of cross-immunity in the population.


Assuntos
Dengue , Infecção por Zika virus , Zika virus , Dengue/epidemiologia , Dengue/prevenção & controle , Surtos de Doenças , Humanos , Incidência , México/epidemiologia , Infecção por Zika virus/epidemiologia
20.
iScience ; 25(10): 105034, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36147948

RESUMO

Although tumors can occur during the lifetime of most multicellular organisms and have the potential to influence health, how they alter life-history traits in tumor-bearing individuals remains poorly documented. This question was explored using the freshwater cnidarian Hydra oligactis, a species sometimes affected by vertically transmitted tumors. We found that tumorous polyps have a reduced survival compared to healthy ones. However, they also displayed higher asexual reproductive effort, by producing more often multiple buds than healthy ones. A similar acceleration is observed for the sexual reproduction (estimated through gamete production). Because tumoral cells are not transmitted through this reproductive mode, this finding suggests that hosts may adaptively respond to tumors, compensating the expected fitness losses by increasing their immediate reproductive effort. This study supports the hypothesis that tumorigenesis has the potential to influence the biology, ecology, and evolution of multicellular species, and thus should be considered more by evolutionary ecologists.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA