Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(14): 6335-6348, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530925

RESUMO

Fecal bacteria in surface water may indicate threats to human health. Our hypothesis is that village settlements in tropical rural areas are major hotspots of fecal contamination because of the number of domestic animals usually roaming in the alleys and the lack of fecal matter treatment before entering the river network. By jointly monitoring the dynamics of Escherichia coli and of seven stanol compounds during four flood events (July-August 2016) at the outlet of a ditch draining sewage and surface runoff out of a village of Northern Lao PDR, our objectives were (1) to assess the range of E. coli concentration in the surface runoff washing off from a village settlement and (2) to identify the major contributory sources of fecal contamination using stanol compounds during flood events. E. coli pulses ranged from 4.7 × 104 to 3.2 × 106 most probable number (MPN) 100 mL-1, with particle-attached E. coli ranging from 83 to 100%. Major contributory feces sources were chickens and humans (about 66 and 29%, respectively), with the highest percentage switching from the human pole to the chicken pole during flood events. Concentrations indicate a severe fecal contamination of surface water during flood events and suggest that villages may be considered as major hotspots of fecal contamination pulses into the river network and thus as point sources in hydrological models.


Assuntos
Monitoramento Ambiental , Escherichia coli , Humanos , Animais , Microbiologia da Água , Galinhas , Poluição da Água , Água , Fezes
2.
Environ Sci Pollut Res Int ; 31(15): 22362-22379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409380

RESUMO

Urban rivers are significantly impacted by anthropogenic pressure. This study presents the updated assessment of the concentrations of 11 metals and other variables (pH, total organic carbon (TOC) and nutrients (total nitrogen, total phosphorus, and total silica)) in the sediments of four urban rivers in inner Hanoi city, Vietnam, during the period 2020-2022. The mean concentrations of Fe, Zn, As, and Cr were higher than the permissible values of the Vietnam National technical regulation on the surface sediment quality. Moreover, Zn and Cr were at the severe effect level of the US EPA guidelines for sediment quality. The calculation of pollution indices (Igeo and EF) demonstrated that Mn, Ni, and Fe were from natural sources whereas other metals were from both anthropogenic and natural sources. The ecological risk index revealed that metals in Hanoi riverine sediments were classified at considerable ecological risk. High values of metals, TOC, and nutrients in the sediments of these urban rivers mostly originate from the accumulation of untreated urban wastewater that is enhanced by low river discharge. Our results may provide scientific base for better management decisions to ensure environmental protection and sustainable development of Hanoi city.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Vietnã , Rios , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Ásia , Medição de Risco , China
3.
Mar Pollut Bull ; 192: 115078, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37210986

RESUMO

Contamination of aquaculture products by pathogenic organisms is a major concern in areas where this activity is of high economic importance. The abundances of total coliforms (TC), Escherichia coli (EC) and faecal streptococci (FS) (in CFU.100 mL-1) in seawater in the Red River coastal aquaculture zone were determined. The results showed TC numbers (200 to 9100; average 1822), EC (<100 to 3400; average 469) and FS (<100 to 2100; average 384), of which TC exceeded the allowable threshold of the Vietnam regulation for coastal aquaculture water. TC and EC numbers in 4 wastewater types (domestic, livestock farming sewage, agricultural runoff, and mixed sewage canals) were investigated and revealed the importance of point sources of faecal contamination in seawater. These results underline the need to reduce the release of untreated wastewater and to put into place seawater microbial quality monitoring in areas where the development of sustainable aquaculture is an objective.


Assuntos
Esgotos , Águas Residuárias , Vietnã , Escherichia coli , Aquicultura , Fezes , Bactérias Gram-Negativas , Monitoramento Ambiental/métodos , Microbiologia da Água
4.
Sci Rep ; 12(1): 8674, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606475

RESUMO

The environmental distribution of Burkholderia pseudomallei, the causative agent of melioidosis, remains poorly understood. B. pseudomallei is known to have the ability to occupy a variety of environmental niches, particularly in soil. This paper provides novel information about a putative association of soil biogeochemical heterogeneity and the vertical distribution of B. pseudomallei. We investigated (1) the distribution of B. pseudomallei along a 300-cm deep soil profile together with the variation of a range of soil physico-chemical properties; (2) whether correlations between the distribution of B. pseudomallei and soil physico-chemical properties exist and (3) when they exist, what such correlations indicate with regards to the environmental conditions conducive to the occurrence of B. pseudomallei in soils. Unexpectedly, the highest concentrations of B. pseudomallei were observed between 100 and 200 cm below the soil surface. Our results indicate that unravelling the environmental conditions favorable to B. pseudomallei entails considering many aspects of the actual complexity of soil. Important recommendations regarding environmental sampling for B. pseudomallei can be drawn from this work, in particular that collecting samples down to the water table is of foremost importance, as groundwater persistence appears to be a controlling factor of the occurrence of B. pseudomallei in soil.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Melioidose/epidemiologia , Solo , Microbiologia do Solo , Manejo de Espécimes
5.
Chemosphere ; 303(Pt 1): 134952, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35595107

RESUMO

Coastal aquaculture contributes significantly to the local economy of many countries however water quality issues in the coastal regions are threatening the sustainability of this economic activity. This paper presents the analysis of seven heavy metals (HM) in surface seawater and wastewater from the Red River coastal aquaculture zone during 2019-2020. HM concentrations (µg.L-1) from 72 seawater samples were: Zn: 60.76 (0.5-188.0); Cu: 26.91 (0.10-96.0); Pb: 7.27 (0.8-31.2); Cr: 6.71 (0.6-28.4); As: 1.38 (0.15-5.78); Cd: 0.44 (0.04-2.41); and Hg: 0.34 (0.02-1.39). All mean values of HM in seawater were lower than the Vietnam regulatory limits for aquaculture seawater although high individual HM concentrations were found in some isolated seawater samples. Concerning wastewater quality, only mean As concentration was higher than the Vietnam regulatory limit for surface water quality, despite the fact that high concentrations of other individual HM were observed. The PCA analysis on the entire dataset of seawater and wastewater samples revealed that HM concentrations in seawater originate from various sources including human activities and natural conditions. The total potential ecological risk index (averaging 18.6; from 7.48 to 39.05) for the Red River coastal zone is in the low range. These results provide a scientific basis for better management of the coastal environment which is important for the sustainable development of the aquaculture industry in this area.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Aquicultura , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Humanos , Metais Pesados/análise , Medição de Risco , Vietnã , Águas Residuárias/análise , Poluentes Químicos da Água/análise
6.
Phytopathology ; 112(8): 1676-1685, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35224981

RESUMO

Although irrigation water is frequently assessed for the presence of plant pathogens, large spatial and temporal surveys that provide clues on the diversity and circulation of pathogens are missing. We evaluate the diversity of soft rot Pectobacteriaceae (SRP) of the genera Dickeya and Pectobacterium over 2 years in a temperate, mixed-use watershed. The abundance of isolated strains correlates with the agricultural gradient along the watershed with a positive correlation found with temperature, nitrate, and dissolved organic carbon water concentration. We characterized 582 strains by amplification and sequencing of the gapA gene. Multilocus sequence analysis, performed with three housekeeping genes for 99 strains, and core genome analysis of 38 sequenced strains, confirmed for all the strains but one, the taxonomic assignation obtained with the sole gapA sequence. Pectobacterium spp. (549 isolates) were far more abundant than Dickeya spp. (33 isolates). Dickeya spp. were only observed in the lower part of the river when water temperature was >19°C, and we experimentally confirmed a decreased fitness of several Dickeya spp. at 8°C in river water. D. oryzae dominates the Dickeya spp. and P. versatile and P. aquaticum dominate the Pectobacterium spp., but their repartition along the watershed was different, with P. versatile being the only species regularly recovered all along the watershed. Excepting P. versatile, the Dickeya and Pectobacterium spp. responsible for disease outbreak on crops were less abundant or rarely detected. This work sheds light on the various ecological behaviors of different SRP types in stream water and indicates that SRP occupation is geographically structured.


Assuntos
Gammaproteobacteria , Pectobacterium , França , Pectobacterium/genética , Doenças das Plantas/microbiologia , Rios , Estações do Ano , Água
7.
PLoS Negl Trop Dis ; 15(8): e0009634, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34403418

RESUMO

In 2017, diarrheal diseases were responsible for 606 024 deaths in Sub-Saharan Africa. This situation is due to domestic and recreational use of polluted surface waters, deficits in hygiene, access to healthcare and drinking water, and to weak environmental and health monitoring infrastructures. Escherichia coli (E. coli) is an indicator for the enteric pathogens that cause many diarrheal diseases. The links between E. coli, diarrheal diseases and environmental parameters have not received much attention in West Africa, and few studies have assessed health risks by taking into account hazards and socio-health vulnerabilities. This case study, carried out in Burkina Faso (Bagre Reservoir), aims at filling this knowledge gap by analyzing the environmental variables that play a role in the dynamics of E. coli, cases of diarrhea, and by identifying initial vulnerability criteria. A particular focus is given to satellite-derived parameters to assess whether remote sensing can provide a useful tool to assess the health hazard. Samples of surface water were routinely collected to measure E. coli, enterococci and suspended particulate matter (SPM) at a monitoring point (Kapore) during one year. In addition, satellite data were used to estimate precipitation, water level, Normalized Difference Vegetation Index (NDVI) and SPM. Monthly epidemiological data for cases of diarrhea from three health centers were also collected and compared with microbiological and environmental data. Finally, semi-structured interviews were carried out to document the use of water resources, contact with elements of the hydrographic network, health behavior and condition, and water and health policy and prevention, in order to identify the initial vulnerability criteria. A positive correlation between E. coli and enterococci in surface waters was found indicating that E. coli is an acceptable indicator of fecal contamination in this region. E. coli and diarrheal diseases were strongly correlated with monsoonal precipitation, in situ SPM, and Near Infra-Red (NIR) band between March and November. Partial least squares regression showed that E. coli concentration was strongly associated with precipitation, Sentinel-2 reflectance in the NIR and SPM, and that the cases of diarrhea were strongly associated with precipitation, NIR, E. coli, SPM, and to a lesser extent with NDVI. Moreover, E. coli dynamics were reproduced using satellite data alone, particularly from February to mid-December (R2 = 0.60) as were cases of diarrhea throughout the year (R2 = 0.76). This implies that satellite data could provide an important contribution to water quality monitoring. Finally, the vulnerability of the population was found to increase during the rainy season due to reduced accessibility to healthcare and drinking water sources and increased use of water of poor quality. During this period, surface water is used because it is close to habitations, easy to use and free from monetary or political constraints. This vulnerability is aggravated by marginality and particularly affects the Fulani, whose concessions are often close to surface water (river, lake) and far from health centers.


Assuntos
Diarreia/epidemiologia , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Estações do Ano , Microbiologia da Água , Burkina Faso/epidemiologia , Diarreia/microbiologia , Diarreia/prevenção & controle , Humanos , Higiene , Chuva , Poluição da Água , Qualidade da Água , Abastecimento de Água
8.
Artigo em Inglês | MEDLINE | ID: mdl-33635452

RESUMO

In tropical montane South-East Asia, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads. Land use change is also contributing to increased microbial pathogen dissemination and contamination of stream waters. Escherichia coli (E. coli) is frequently used as an indicator of faecal contamination. Field rain simulations were conducted to examine how E. coli is exported from the surface of upland, agricultural soils during runoff events. The objectives were to characterize the loss dynamics of this indicator from agricultural soils contaminated with livestock waste, and to identify the effect of splash on washoff. Experiments were performed on nine 1 m2 plots, amended or not with pig or poultry manure. Each plot was divided into two 0.5 m2 sub-plots. One of the two sub-plots was protected with a mosquito net for limiting the raindrop impact effects. Runoff, soil detachment by raindrop impact and its entrainment by runoff, and E. coli loads and discharge were measured for each sub-plot. The results show that raindrop impact strongly enhances runoff generation, soil detachment and entrainment and E. coli export. When the impact of raindrops was reduced with a mosquito net, total runoff was reduced by more than 50%, soil erosion was on average reduced by 90% and E. coli export from the amended soil surface was on average 3 to 8 times lower. A coupled physics-based approach was performed using the Cast3M platform for modelling the time evolutions of runoff, solid particles detachment and transfer and bacteria transport that were measured for one of the nine plots. After estimation of the saturated hydraulic conductivity, soil erodibility and attachment rate of bacteria, model outputs were consistent with measured runoff coefficients, suspended sediment and E. coli loads. This work therefore underlines the need to maintain adequate vegetation at the soil surface to avoid the erosion and export of soil borne potential pathogens towards downstream aquatic systems.

9.
Mol Ecol ; 30(9): 2162-2177, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33639035

RESUMO

Despite small freshwater ecosystems being biodiversity reservoirs and contributing significantly to greenhouse fluxes, their microbial communities remain largely understudied. Yet, microorganisms intervene in biogeochemical cycling and impact water quality. Because of their small size, these ecosystems are in principle more sensitive to disturbances, seasonal variation and pluri-annual climate change. However, how microbial community composition varies over space and time, and whether archaeal, bacterial and microbial eukaryote communities behave similarly remain unanswered. Here, we aim to unravel the composition and intra/interannual temporal dynamic patterns for archaea, bacteria and microbial eukaryotes in a set of small freshwater ecosystems. We monitored archaeal and bacterial community composition during 24 consecutive months in four ponds and one brook from northwestern France by 16S rRNA gene amplicon sequencing (microbial eukaryotes were previously investigated for the same systems). Unexpectedly for oxic environments, bacterial Candidate Phyla Radiation (CPR) were highly diverse and locally abundant. Our results suggest that microbial community structure is mainly driven by environmental conditions acting over space (ecosystems) and time (seasons). A low proportion of operational taxonomic units (OTUs) (<1%) was shared by the five ecosystems despite their geographical proximity (2-9 km away), making microbial communities almost unique in each ecosystem and highlighting the strong selective influence of local environmental conditions. Marked and similar seasonality patterns were observed for archaea, bacteria and microbial eukaryotes in all ecosystems despite strong turnovers of rare OTUs. Over the 2-year survey, microbial community composition varied despite relatively stable environmental parameters. This suggests that biotic associations play an important role in interannual community assembly.


Assuntos
Ecossistema , Microbiota , Archaea/genética , Biodiversidade , França , Água Doce , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
10.
Sci Rep ; 11(1): 3460, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568764

RESUMO

In the basin of Mekong, over 70 million people rely on unimproved surface water for their domestic requirements. Surface water is often contaminated with fecal matter and yet little information exists on the underlying mechanisms of fecal contamination in tropical conditions at large watershed scales. Our objectives were to (1) investigate the seasonality of fecal contamination using Escherichia coli as fecal indicator bacteria (FIB), and (2) establish links between the fecal contamination in stream water and its controlling factors (hydrology and land use). We present the results of (1) a sampling campaign at the outlet of 19 catchments across Lao PDR, in both the dry and the rainy seasons of 2016, and (2) a 10-day interval monitoring conducted in 2017 and 2018 at three point locations of three rivers (Nam Ou, Nam Suang, and Mekong) in northern Lao PDR. Our results show the presence of fecal contamination at most of the sampled sites, with a seasonality characterized by higher and extreme E. coli concentrations occurring during the rainy season. The highest E. coli concentrations, strongly correlated with total suspended sediment concentrations, were measured in catchments dominated by unstocked forest areas, especially in mountainous northern Lao PDR and in Vientiane province.

11.
Sci Total Environ ; 764: 142865, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097262

RESUMO

This review provides focused insights into the contamination status, sources, and ecological risks associated with multiple classes of antibiotics in surface water from the East and Southeast Asia based on publications over the period 2007 to 2020. Antibiotics are ubiquitous in surface water of these countries with concentrations ranging from <1 ng/L to hundreds µg/L and median values from 10 to 100 ng/L. Wider ranges and higher maximum concentrations of certain antibiotics were found in surface water of the East Asian countries like China and South Korea than in the Southeast Asian nations. Environmental behavior and fate of antibiotics in surface water is discussed. The reviewed occurrence of antibiotics in their sources suggests that effluent from wastewater treatment plants, wastewater from aquaculture and livestock production activities, and untreated urban sewage are principal sources of antibiotics in surface water. Ecological risks associated with antibiotic residues were estimated for aquatic organisms and the prevalence of antibiotic resistance genes and antibiotic-resistant bacteria were reviewed. Such findings underline the need for synergistic efforts from scientists, engineers, policy makers, government managers, entrepreneurs, and communities to manage and reduce the burden of antibiotics and antibiotic resistance in water bodies of East and Southeast Asian countries.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Sudeste Asiático , China , Monitoramento Ambiental , Ásia Oriental , República da Coreia , Águas Residuárias , Água , Poluentes Químicos da Água/análise
12.
Microorganisms ; 8(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727027

RESUMO

To compare environmental and culture-derived microbial communities, we performed 16S metabarcoding of uncultured samples and their culture-derived bacterial lawns. Microbial communities were obtained from freshwater river samples representative of an anthropization gradient along a river stream. Their culture-derived bacterial lawns were obtained by growing aliquots of the samples on a broad range medium and on two different semi-selective media. The V3-V4 16S rRNA region was amplified and sequenced. The bacterial diversity of water samples decreased from the upper to lower stream sampling sites and, as expected, these differences were mostly suppressed by the culture step. Overall, the diversity of cultured-derived bacterial communities reflected selectivity of each tested medium. Comparison of treatments indicated that the culture selected both detected and rare undetected environmental species. Accurate detection of rare environmental bacteria of the Pectobacterium genus by 16S metabarcoding of the culture lawn was demonstrated. Interestingly, for abundant taxa, such as those of the Pseudomonas genus, the culture/environment ratio varied between sampled sites, indicating the difficulty of comparing cultured-derived taxa abundance between environmental sites. Finally, our study also highlighted media specificity and complementarity: bacterial communities grown on the two selective media, while selecting a small set of specific species, were mostly a subset of the bacterial community observed on the broad range medium.

13.
Sci Total Environ ; 667: 475-484, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833246

RESUMO

The world human population is more and more urban and cities have a strong impact on the biosphere. This explains the development of urban ecology. In this context, the goal of our work is fourfold: to describe the diversity of scientific questions in urban ecology, show how these questions are organized, to assess how these questions can be built in close interactions with stakeholders, to better understand the role urban ecology can play within ecological sciences. A workshop with scientists from all relevant fields (from ecology to sociology) and stakeholders was organized by the Foundation for Research on Biodiversity (FRB). Three types of scientific issues were outlined about (1) the biodiversity of organisms living in urban areas, (2) the functioning of urban organisms and ecosystems, (3) interactions between human societies and urban ecological systems. For all types of issues we outlined it was possible to distinguish both fundamental and applied scientific questions. This allowed building a unique research agenda encompassing all possible types of scientific issues in urban ecology. As all types of ecological and evolutionary questions can be asked in urban areas, urban ecology will likely be more and more influential in the development of ecology. Taken together, the future of towns, their biodiversity and the life of city dwellers is at stake. Increasing the space for ecosystems and biodiversity within towns is more and more viewed as crucial for the well-being of town dwellers. Depending on research and the way its results are taken into account, very different towns could emerge. Urban areas can be viewed as a test and a laboratory for the future of the interactions between human and ecological systems.


Assuntos
Ecologia , Biodiversidade , Evolução Biológica , Cidades , Ecossistema , Monitoramento Ambiental , Humanos , Pesquisa , Urbanização
14.
FEMS Microbiol Ecol ; 94(11)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107549

RESUMO

Impact of land use (LU) change on stream environmental conditions and the inhabiting bacterial community remains rarely investigated, especially in tropical montane catchments. We examined the effects of LU change and its legacy along a tropical stream by comparing seasonal patterns of dissolved organic carbon (DOC) / colored dissolved organic matter (CDOM) in relation to variations in structure, diversity and metabolic capacities of particle-attached (PA) and free-living (FL) bacterial communities. We hypothesized that despite seasonal differences, hydrological flows that accumulate allochthonous carbon along the catchment are a major controlling factor of the bacterial community. Surprisingly, local environmental conditions that were largely related to nearby LU and the legacy of LU change were more important for stream bacterial diversity than hydrological connectivity. DOC was strongly correlated with PA richness and diversity. The legacy of LU change between teak plantation and annual crops induced high DOC and high diversity and richness of PA in the adjacent waters, while banana plantations were associated with high diversity of FL. The community structures of both PA and FL differed significantly between seasons. Our results highlight the importance of vicinal LU change and its legacy on aquatic bacterial communities in mixed used tropical watersheds.


Assuntos
Bactérias/isolamento & purificação , Rios/microbiologia , Carbono/análise , Rios/química , Estações do Ano , Clima Tropical
15.
Water Res ; 119: 102-113, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436821

RESUMO

The occurrence of pathogen bacteria in surface waters is a threat to public health worldwide. In particular, inadequate sanitation resulting in high contamination of surface water with pathogens of fecal origin is a serious issue in developing countries such as Lao P.D.R. Despite the health implications of the consumption of contaminated surface water, the environmental fate and transport of pathogens of fecal origin and their indicators (Fecal Indicator Bacteria or FIB) are still poorly known in tropical areas. In this study, we used measurements of flow rates, suspended sediments and of the FIB Escherichia coli (E. coli) in a 60-ha catchment in Northern Laos to explore the ability of the Soil and Water Assessment Tool (SWAT) to simulate watershed-scale FIB fate and transport. We assessed the influences of 3 in-stream processes, namely bacteria deposition and resuspension, bacterial regrowth, and hyporheic exchange (i.e. transient storage) on predicted FIB numbers. We showed that the SWAT model in its original version does not correctly simulate small E. coli numbers during the dry season. We showed that model's performance could be improved when considering the release of E. coli together with sediment resuspension. We demonstrated that the hyporheic exchange of bacteria across the Sediment-Water Interface (SWI) should be considered when simulating FIB concentration not only during wet weather, but also during the dry season, or baseflow period. In contrast, the implementation of the regrowth process did not improve the model during the dry season without inducing an overestimation during the wet season. This work thus underlines the importance of taking into account in-stream processes, such as deposition and resuspension, regrowth and hyporheic exchange, when using SWAT to simulate FIB dynamics in surface waters.


Assuntos
Fezes , Microbiologia da Água , Bactérias , Monitoramento Ambiental , Escherichia coli , Laos , Clima Tropical
16.
PLoS Negl Trop Dis ; 10(12): e0005195, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27935960

RESUMO

BACKGROUND: The global burden of diarrhea is a leading cause of morbidity and mortality worldwide. In montane areas of South-East Asia such as northern Laos, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads, and potential pathogen dissemination. To our knowledge, few studies have related diarrhea incidences to catchment scale hydrological factors such as river discharge, and loads of suspended sediment and of Fecal Indicator Bacteria (FIB) such as Escherichia coli, together with sociological factors such as hygiene practices. We hypothesized that climate factors combined with human behavior control diarrhea incidence, either because higher rainfall, leading to higher stream discharges, suspended sediment loads and FIB counts, are associated with higher numbers of reported diarrhea cases during the rainy season, or because water shortage leads to the use of less safe water sources during the dry season. Using E. coli as a FIB, the objectives of this study were thus (1) to characterize the epidemiological dynamics of diarrhea in Northern Laos, and (2) to identify which hydro-meteorological and sociological risk factors were associated with diarrhea epidemics. METHODS: Considering two unconnected river catchments of 22 and 7,448 km2, respectively, we conducted a retrospective time series analysis of meteorological variables (rainfall, air temperature), hydrological variables (discharge, suspended sediments, FIB counts, water temperature), and the number of diarrheal disease cases reported at 6 health centers located in the 5 southern districts of the Luang Prabang Province, Lao PDR. We also examined the socio-demographic factors potentially affecting vulnerability to the effect of the climate factors, such as drinking water sources, hygiene habits, and recreational water exposure. RESULTS: Using thus a mixed methods approach, we found E. coli to be present all year long (100-1,000 Most Probable Number or MPN 100 mL-1) indicating that fecal contamination is ubiquitous and constant. We found that populations switch their water supply from wells to surface water during drought periods, the latter of which appear to be at higher risk of bacterial contamination than municipal water fountains. We thus found that water shortage in the Luang Prabang area triggers diarrhea peaks during the dry and hot season and that rainfall and aquifer refill ends the epidemic during the wet season. The temporal trends of reported daily diarrhea cases were generally bimodal with hospital admissions peaking in February-March and later in May-July. Annual incidence rates were higher in more densely populated areas and mostly concerned the 0-4 age group and male patients. CONCLUSIONS: We found that anthropogenic drivers, such as hygiene practices, were at least as important as environmental drivers in determining the seasonal pattern of a diarrhea epidemic. For diarrheal disease risk monitoring, discharge or groundwater level can be considered as relevant proxies. These variables should be monitored in the framework of an early warning system provided that a tradeoff is found between the size of the monitored catchment and the frequency of the measurement.


Assuntos
Diarreia/epidemiologia , Fezes/microbiologia , Estações do Ano , Microbiologia da Água , Abastecimento de Água , Água , Centros Comunitários de Saúde , Demografia , Diarreia/microbiologia , Diarreia/prevenção & controle , Epidemias , Escherichia coli/isolamento & purificação , Feminino , Humanos , Higiene , Laos/epidemiologia , Masculino , Chuva , Estudos Retrospectivos , Rios/microbiologia , Clima Tropical
17.
Sci Rep ; 6: 32974, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604854

RESUMO

Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.


Assuntos
Escherichia coli/isolamento & purificação , Rios/microbiologia , Agricultura , Animais , Carga Bacteriana , Países em Desenvolvimento , Monitoramento Ambiental , Fezes/microbiologia , Humanos , Umidade , Hidrologia , Laos , Chuva , Estações do Ano , Tailândia , Clima Tropical , Vietnã , Microbiologia da Água , Abastecimento de Água
18.
Environ Monit Assess ; 188(9): 517, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27523602

RESUMO

Many studies have been published on the use of models to assess water quality through faecal contamination levels. However, the vast majority of this work has been conducted in developed countries and similar studies from developing countries in tropical regions are lacking. Here, we used the Seneque/Riverstrahler model to investigate the dynamics and seasonal distribution of total coliforms (TC), an indicator of faecal contamination, in the Red River (Northern Vietnam) and its upstream tributaries. The results of the model showed that, in general, the overall correlations between the simulated and observed values of TC follow a 1:1 relationship at all examined stations. They also showed that TC numbers were affected by both land use in terms of human and livestock populations and by hydrology (river discharge). We also developed a possible scenario based on the predicted changes in future demographics and land use in the Red River system for the 2050 horizon. Interestingly, the results showed only a limited increase of TC numbers compared with the present situation at all stations, especially in the upstream Vu Quang station and in the urban Ha Noi station. This is probably due to the dominance of diffuse sources of contamination relative to point sources. The model is to our knowledge one of the first mechanistic models able to simulate spatial and seasonal variations of microbial contamination (TC numbers) in the whole drainage network of a large regional river basin covering both urban and rural areas of a developing country.


Assuntos
Monitoramento Ambiental/métodos , Fezes/microbiologia , Modelos Teóricos , Rios/microbiologia , Animais , Enterobacteriaceae , Humanos , Gado , Densidade Demográfica , Estações do Ano , Vietnã , Poluentes da Água , Qualidade da Água
19.
Front Microbiol ; 7: 889, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379034

RESUMO

Organic fertilizer application is often touted as an economical and effective method to increase soil fertility. However, this amendment may increase dissolved organic carbon (DOC) runoff into downstream aquatic ecosystems and may consequently alter aquatic microbial community. We focused on understanding the effects of DOC runoff from soils amended with compost, vermicompost, or biochar on the aquatic microbial community of a tropical reservoir. Runoff collected from a series of rainfall simulations on soils amended with different organic fertilizers was incubated for 16 days in a series of 200 L mesocosms filled with water from a downstream reservoir. We applied 454 high throughput pyrosequencing for bacterial 16S rRNA genes to analyze microbial communities. After 16 days of incubation, the richness and evenness of the microbial communities present decreased in the mesocosms amended with any organic fertilizers, except for the evenness in the mesocosms amended with compost runoff. In contrast, they increased in the reservoir water control and soil-only amended mesocosms. Community structure was mainly affected by pH and DOC concentration. Compared to the autochthonous organic carbon produced during primary production, the addition of allochthonous DOC from these organic amendments seemed to exert a stronger effect on the communities over the period of incubation. While the Proteobacteria and Actinobacteria classes were positively associated with higher DOC concentration, the number of sequences representing key bacterial groups differed between mesocosms particularly between the biochar runoff addition and the compost or vermi-compost runoff additions. The genera of Propionibacterium spp. and Methylobacterium spp. were highly abundant in the compost runoff additions suggesting that they may represent sentinel species of complex organic carbon inputs. Overall, this work further underlines the importance of studying the off-site impacts of organic fertilizers as their impact on downstream aquatic systems is not negligible.

20.
Environ Sci Pollut Res Int ; 23(8): 7828-39, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26758304

RESUMO

Burkholderia pseudomallei is the bacterium that causes melioidosis in humans. While B. pseudomallei is known to be endemic in South East Asia (SEA), the occurrence of the disease in other parts of the tropics points towards a potentially large global distribution. We investigated the environmental factors that influence the presence (and absence) of B. pseudomallei in a tropical watershed in SEA. Our main objective was to determine whether there is a link between the presence of the organism in the hydrographic network and the upstream soil and land-use type. The presence of B. pseudomallei was determined using a specific quantitative real-time PCR assay following enrichment culture. Land use, soil, geomorphology, and environmental data were then analyzed using partial least squares discriminant analysis (PLSDA) to compare the B. pseudomallei positive and negative sites. Soil type in the surrounding catchment and turbidity had a strong positive influence on the presence (acrisols and luvisols) or absence (ferralsols) of B. pseudomallei. Given the strong apparent links between soil characteristics, water turbidity, and the presence/absence of B. pseudomallei, actions to raise public awareness about factors increasing the risk of exposure should be undertaken in order to reduce the incidence of melioidosis in regions of endemicity.


Assuntos
Burkholderia pseudomallei/isolamento & purificação , Rios/microbiologia , Solo , Clima Tropical , Burkholderia pseudomallei/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA