Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943018

RESUMO

In this novel large-scale multiplexed immunofluorescence study we comprehensively characterized and compared layer-specific proteomic features within regions of interest of the widely divergent dorsolateral prefrontal cortex (A46) and primary visual cortex (A17) of adult rhesus monkeys. Twenty-eight markers were imaged in rounds of sequential staining, and their spatial distribution precisely quantified within gray matter layers and superficial white matter. Cells were classified as neurons, astrocytes, oligodendrocytes, microglia, or endothelial cells. The distribution of fibers and blood vessels were assessed by quantification of staining intensity across regions of interest. This method revealed multivariate similarities and differences between layers and areas. Protein expression in neurons was the strongest determinant of both laminar and regional differences, whereas protein expression in glia was more important for intra-areal laminar distinctions. Among specific results, we observed a lower glia-to-neuron ratio in A17 than in A46 and the pan-neuronal markers HuD and NeuN were differentially distributed in both brain areas with a lower intensity of NeuN in layers 4 and 5 of A17 compared to A46 and other A17 layers. Astrocytes and oligodendrocytes exhibited distinct marker-specific laminar distributions that differed between regions; notably, there was a high proportion of ALDH1L1-expressing astrocytes and of oligodendrocyte markers in layer 4 of A17. The many nuanced differences in protein expression between layers and regions observed here highlight the need for direct assessment of proteins, in addition to RNA expression, and set the stage for future protein-focused studies of these and other brain regions in normal and pathological conditions.

2.
J Comp Neurol ; 531(18): 1869, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38159066
3.
J Comp Neurol ; 531(18): 1926-1933, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941081

RESUMO

The feedforward/feedback classification, as originally stated in relation to early visual areas in the macaque monkey, has had a significant influence on ideas of laminar interactions, area reciprocity, and cortical hierarchical organization. In some contrast with this macroscale "laminar connectomics," a more cellular approach to cortical connections, as briefly surveyed here, points to a still underappreciated heterogeneity of neuronal subtypes and complex microcircuitries. From the perspective of heterogeneities, the question of how brain regions interact and influence each other quickly leads to discussions about concurrent hierarchical and nonhierarchical cortical features, brain organization as a multiscale system forming nested groups and hierarchies, connectomes annotated by multiple biological attributes, and interleaved and overlapping scales of organization.


Assuntos
Conectoma , Córtex Visual , Animais , Córtex Visual/fisiologia , Macaca/fisiologia , Neurônios/fisiologia , Encéfalo/fisiologia
5.
Brain Struct Funct ; 228(1): 131-143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35906433

RESUMO

The angular gyrus is associated with a spectrum of higher order cognitive functions. This mini-review undertakes a broad survey of putative neuroanatomical substrates, guided by the premise that area-specific specializations derive from a combination of extrinsic connections and intrinsic area properties. Three levels of spatial resolution are discussed: cellular, supracellular connectivity, and synaptic micro-scale, with examples necessarily drawn mainly from experimental work with nonhuman primates. A significant factor in the functional specialization of the human parietal cortex is the pronounced enlargement. In addition to "more" cells, synapses, and connections, however, the heterogeneity itself can be considered an important property. Multiple anatomical features support the idea of overlapping and temporally dynamic membership in several brain wide subnetworks, but how these features operate in the context of higher cognitive functions remains for continued investigations.


Assuntos
Córtex Cerebral , Lobo Parietal , Animais , Humanos , Sinapses , Cognição , Encéfalo
7.
Elife ; 112022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35647816

RESUMO

Pyramidal neurons with axons that exit from dendrites rather than the cell body itself are relatively common in non-primates, but rare in monkeys and humans.


Assuntos
Axônios , Neurônios , Axônios/fisiologia , Corpo Celular , Neurônios/fisiologia , Células Piramidais
8.
Front Syst Neurosci ; 16: 910845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720440
9.
Front Neuroanat ; 16: 891608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692258

RESUMO

The stria terminalis (ST) is a major bidirectional fiber tract anchored in the amygdala and bed nucleus (BNST). Extensive investigations in rodents report a complex arrangement of neurochemically diverse neurons within the ST, but fewer data are available for non-human primates. Given the functional importance of the ST, we investigated its microarchitecture in one newborn, four infant, and two adult macaque brains, by parallel immunocytochemical series for cells or fibers. Main results are as follows: (1) The pan-neuronal marker NeuN shows scattered neurons and small neuronal clusters in both the dorsal and ventral ST, but more numerous dorsally; (2) smaller neuronal subpopulations are labeled by calretinin (CR), neuropeptide Y (NPY), calbindin (CB), and somatostatin (SOM), of which the CR + neurons are the most numerous; (3) the infant brains on average have more neurons in the ST than the adult brains, but across our sample, there is notable individual variability; and (4) fiber architectonics have a complex organization, which can be referenced to myelin-poor or myelin-dense zones. Myelin-poor zones coincide with concentrations of fibers positive for CB, CR, or tyrosine hydroxylase (TH). Neurons have been reported in other white matter domains (e.g., anterior commissure, corpus callosum, cingulum bundle, and subcortical white matter). Like these, at least some neurons within the ST may give rise to long-distance connections, and/or participate in more local functions, such as vascular regulation or axon guidance/maintenance.

10.
11.
Front Neuroanat ; 16: 995286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590377

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and is associated with a variety of structural and psychological alterations. Recently, there has been renewed interest in using brain tissue resected during epilepsy surgery, in particular 'non-epileptic' brain samples with normal histology that can be found alongside epileptic tissue in the same epileptic patients - with the aim being to study the normal human brain organization using a variety of methods. An important limitation is that different medical characteristics of the patients may modify the brain tissue. Thus, to better determine how 'normal' the resected tissue is, it is fundamental to know certain clinical, anatomical and psychological characteristics of the patients. Unfortunately, this information is frequently not fully available for the patient from which the resected tissue has been obtained - or is not fully appreciated by the neuroscientists analyzing the brain samples, who are not necessarily experts in epilepsy. In order to present the full picture of TLE in a way that would be accessible to multiple communities (e.g., basic researchers in neuroscience, neurologists, neurosurgeons and psychologists), we have reviewed 34 TLE patients, who were selected due to the availability of detailed clinical, anatomical, and psychological information for each of the patients. Our aim was to convey the full complexity of the disorder, its putative anatomical substrates, and the wide range of individual variability, with a view toward: (1) emphasizing the importance of considering critical patient information when using brain samples for basic research and (2) gaining a better understanding of normal and abnormal brain functioning. In agreement with a large number of previous reports, this study (1) reinforces the notion of substantial individual variability among epileptic patients, and (2) highlights the common but overlooked psychopathological alterations that occur even in patients who become "seizure-free" after surgery. The first point is based on pre- and post-surgical comparisons of patients with hippocampal sclerosis and patients with normal-looking hippocampus in neuropsychological evaluations. The second emerges from our extensive battery of personality and projective tests, in a two-way comparison of these two types of patients with regard to pre- and post-surgical performance.

12.
Brain Struct Funct ; 226(9): 2793-2806, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34382115

RESUMO

An ordered relation of structure and function has been a cornerstone in thinking about brain organization. Like the brain itself, however, this is not straightforward and is confounded both by functional intricacy and structural plasticity (many routes to a given outcome). As a striking case of putative structure-function correlation, this mini-review focuses on the relatively well-characterized pattern of cytochrome oxidase (CO) blobs (aka "patches" or "puffs") in the supragranular layers of macaque monkey visual cortex. The pattern is without doubt visually compelling, and the semi-dichotomous array of CO+ blobs and CO- interblobs is consistent with multiple studies reporting compartment-specific preferential connectivity and distinctive physiological response properties. Nevertheless, as briefly reviewed here, the finer anatomical organization of this system is surprisingly under-investigated, and the relation to functional aspects, therefore, unclear. Microcircuitry, cell type, and three-dimensional spatiotemporal level investigations of the CO+ CO- pattern are needed and may open new views to structure-function organization of visual cortex, and to phylogenetic and ontogenetic comparisons across nonhuman primates (NHP), and between NHP and humans.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Córtex Visual , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Macaca , Filogenia , Córtex Visual/metabolismo
13.
J Comp Neurol ; 529(14): 3429-3452, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34180538

RESUMO

We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), throughout the telencephalic white matter of an adult female chimpanzee. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to the inner border of cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed an estimate of approximately 137.2 million WMICs within the infracortical white matter of the chimpanzee brain studied. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, approximately 14.4 million in number), calretinin (CR, approximately 16.7 million), very few WMICs containing parvalbumin (PV), and no calbindin-immunopositive neurons. The nNOS, CR, and PV immunopositive WMICs, possibly all inhibitory neurons, represent approximately 22.6% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism, epilepsy, and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/química , Pan troglodytes/fisiologia , Substância Branca/fisiologia , Animais , Química Encefálica , Calbindina 2/metabolismo , Calbindinas/metabolismo , Contagem de Células , Córtex Cerebral/química , Córtex Cerebral/citologia , Feminino , Imuno-Histoquímica , Modelos Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Parvalbuminas/metabolismo , Substância Branca/química , Substância Branca/citologia
14.
15.
J Comp Neurol ; 528(17): 3023-3038, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32103488

RESUMO

A large population of infracortical white matter neurons, or white matter interstitial cells (WMICs), are found within the subcortical white matter of the mammalian telencephalon. We examined WMICs in three species of megachiropterans, Megaloglossus woermanni, Casinycteris argynnis, and Rousettus aegyptiacus, using immunohistochemical and stereological techniques. Immunostaining for neuronal nuclear marker (NeuN) revealed substantial numbers of WMICs in each species-M. woermanni 124,496 WMICs, C. argynnis 138,458 WMICs, and the larger brained R. aegyptiacus having an estimated WMIC population of 360,503. To examine the range of inhibitory neurochemical types we used antibodies against parvalbumin, calbindin, calretinin, and neural nitric oxide synthase (nNOS). The calbindin and nNOS immunostained neurons were the most commonly observed, while those immunoreactive for calretinin and parvalbumin were sparse. The proportion of WMICs exhibiting inhibitory neurochemical profiles was ~26%, similar to that observed in previously studied primates. While for the most part the WMIC population in the megachiropterans studied was similar to that observed in other mammals, the one feature that differed was the high proportion of WMICs immunoreactive to calbindin, whereas in primates (macaque monkey, lar gibbon and human) the highest proportion of inhibitory WMICs contain calretinin. Interestingly, there appears to be an allometric scaling of WMIC numbers with brain mass. Further quantitative comparative work across more mammalian species will reveal the developmental and evolutionary trends associated with this infrequently studied neuronal population.


Assuntos
Química Encefálica , Encéfalo/citologia , Neurônios/química , Substância Branca/química , Substância Branca/citologia , Animais , Encéfalo/fisiologia , Química Encefálica/fisiologia , Contagem de Células/métodos , Tamanho Celular , Quirópteros , Masculino , Neurônios/fisiologia , Especificidade da Espécie , Substância Branca/fisiologia
16.
Brain Struct Funct ; 225(2): 705-734, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016558

RESUMO

In the hippocampal CA1 area, the GABAergic trilaminar cells have their axon distributed locally in three layers and also innervate the subiculum. Trilaminar cells have a high level of somato-dendritic muscarinic M2 acetylcholine receptor, lack somatostatin expression and their presynaptic inputs are enriched in mGluR8a. But the origin of their inputs and their behaviour-dependent activity remain to be characterised. Here we demonstrate that (1) GABAergic neurons with the molecular features of trilaminar cells are present in CA1 and CA3 in both rats and mice. (2) Trilaminar cells receive mGluR8a-enriched GABAergic inputs, e.g. from the medial septum, which are probably susceptible to hetero-synaptic modulation of neurotransmitter release by group III mGluRs. (3) An electron microscopic analysis identifies trilaminar cell output synapses with specialised postsynaptic densities and a strong bias towards interneurons as targets, including parvalbumin-expressing cells in the CA1 area. (4) Recordings in freely moving rats revealed the network state-dependent segregation of trilaminar cell activity, with reduced firing during movement, but substantial increase in activity with prolonged burst firing (> 200 Hz) during slow wave sleep. We predict that the behaviour-dependent temporal dynamics of trilaminar cell firing are regulated by their specialised inhibitory inputs. Trilaminar cells might support glutamatergic principal cells by disinhibition and mediate the binding of neuronal assemblies between the hippocampus and the subiculum via the transient inhibition of local interneurons.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Animais , Feminino , Neurônios GABAérgicos/ultraestrutura , Hipocampo/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Vias Neurais/ultraestrutura , Ratos Sprague-Dawley , Receptor Muscarínico M2/metabolismo
17.
Brain Struct Funct ; 225(4): 1327-1347, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31925518

RESUMO

Anterogradely labeled connections at the single-axon level provide unparalleled spatial and quantitative data as well as a novel perspective on laminar, columnar, hierarchical and other aspects of cortical organization. Here, I briefly summarize single-axon results from representative examples of thalamocortical, corticocortical, callosal, and lateral intrinsic connections, with attention to implications for cortical organization. Particularly worth emphasizing is the intricate spatial configuration and striking morphometric heterogeneity of individual axons even within the same system of connections. A short section touches on patterns of axonal trajectories in the distal, preterminal few millimeters. Emphasis is on studies in nonhuman primates from about 1983 to present, with non-viral tracers and 2-D reconstruction (i.e., compressed z-axis) in the early visual cortical pathway. The last section recapitulates what this approach can tell us about inter-areal communication and cortical organization, and possible implications for dynamics and effective connectivity, and concludes with comments on open questions and future directions.


Assuntos
Axônios , Encéfalo/citologia , Animais , Córtex Cerebral/citologia , Corpo Caloso/citologia , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico , Primatas , Tálamo/citologia
18.
J Comp Neurol ; 528(3): 453-467, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31483857

RESUMO

Continuing investigations of corticostriatal connections in rodents emphasize an intricate architecture where striatal projections originate from different combinations of cortical layers, include an inhibitory component, and form terminal arborizations which are cell-type dependent, extensive, or compact. Here, we report that in macaque monkeys, deep and superficial cortical white matter neurons (WMNs), peri-claustral WMNs, and the claustrum proper project to the putamen. WMNs retrogradely labeled by injections in the putamen (four injections in three macaques) were widely distributed, up to 10 mm antero-posterior from the injection site, mainly dorsal to the putamen in the external capsule, and below the premotor cortex. Striatally projecting labeled WMNs (WMNsST) were heterogeneous in size and shape, including a small GABAergic component. We compared the number of WMNsST with labeled claustral and cortical neurons and also estimated their proportion in relation to total WMNs. Since some WMNsST were located adjoining the claustrum, we wanted to compare results for density and distribution of striatally projecting claustral neurons (ClaST). ClaST neurons were morphologically heterogeneous and mainly located in the dorsal and anterior claustrum, in regions known to project to frontal, motor, and cingulate cortical areas. The ratio of ClaST to WMNsST was about 4:1 averaged across the four injections. These results provide new specifics on the connectional networks of WMNs in nonhuman primates, and delineate additional loops in the corticostriatal architecture, consisting of interconnections across cortex, claustralstriatal and striatally projecting WMNs.


Assuntos
Claustrum/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Putamen/fisiologia , Substância Branca/fisiologia , Animais , Claustrum/química , Feminino , Macaca , Macaca mulatta , Masculino , Rede Nervosa/química , Vias Neurais/química , Vias Neurais/fisiologia , Neurônios/química , Putamen/química , Substância Branca/química
19.
Vision (Basel) ; 4(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861468

RESUMO

Pulvino-cortical (PC) projections are a major source of extrinsic input to early visual areas in the macaque. From bulk injections of anterograde tracers, these are known to terminate in layer 1 of V1 and densely in the middle cortical layers of extrastriate areas. Finer, single axon analysis, as reviewed here for projections from the lateral pulvinar (PL) in two macaque monkeys (n = 25 axons), demonstrates that PL axons have multiple arbors in V2 and V4, and that these are spatially separate and offset in different layers. In contrast, feedforward cortical axons, another major source of extrinsic input to extrastriate areas, are less spatially divergent and more typically terminate in layer 4. Functional implications are briefly discussed, including comparisons with the better investigated rodent brain.

20.
Eur J Neurosci ; 49(8): 969-977, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29542210

RESUMO

Recent commentaries on the role of the thalamus consider a wide sphere of influence beyond sensory-motor transformation, to include task-relevant cognitive processes. In this short review, I reconsider known anatomic features of corticothalamic connectivity, primarily for macaque monkey, and discuss these as part of an intricate network architecture consistent with multiple connectional recombinations and a diversity of functional tasks. Drawing mainly on results from single axon analysis for the two broad classes of corticothalamic (CT) connections, I review the strikingly complementary spatial parameters of their extrinsic CT arbors in relation to intrinsic cortical collaterals. That is, CT neurons in layer 5 (class II) have spatially compact (low divergent) thalamic fields, but highly spatially divergent cortical collaterals. In contrast, CT neurons in layer 6 (class I) have highly divergent thalamic fields, but delimited, low divergent cortical collaterals. CT convergence in the thalamus is technically more difficult to analyze, but one can infer a low convergence of terminations from layer 5, in contrast with CT terminations from layer 6, which are highly convergent. Reciprocating thalamocortical (TC) axons have multiple clustered and divergent arbors. What to conclude from these relationships requires further investigation of activity patterns and networks under different conditions. Specific parameters are suggestive of selective recruitment of distributed postsynaptic networks and ordered activity sequences; but are these separable systems, operating cooperatively or in parallel (L.5 low divergent/low convergent vs. L. 6 high divergent/high convergent)?


Assuntos
Axônios , Córtex Cerebral/citologia , Tálamo/citologia , Animais , Macaca , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA