Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606362

RESUMO

Rodent premotor cortex (M2) integrates information from sensory and cognitive networks for action planning during goal-directed decision-making. M2 function is regulated by cortical inputs and ascending neuromodulators, including norepinephrine (NE) released from the locus coeruleus (LC). LC-NE has been shown to modulate the signal-to-noise ratio of neural representations in target cortical regions, increasing the salience of relevant stimuli. Using rats performing a two-alternative forced choice task after administration of a ß-noradrenergic antagonist (propranolol), we show that ß-noradrenergic signaling is necessary for effective action plan signals in anterior M2. Loss of ß-noradrenergic signaling results in failure to suppress irrelevant action plans in anterior M2 disrupting decoding of cue-related information, delaying decision times, and increasing trial omissions, particularly in females. Furthermore, we identify a potential mechanism for the sex bias in behavioral and neural changes after propranolol administration via differential expression of ß2 noradrenergic receptor RNA across sexes in anterior M2, particularly on local inhibitory neurons. Overall, we show a critical role for ß-noradrenergic signaling in anterior M2 during decision-making by suppressing irrelevant information to enable efficient action planning and decision-making.


Assuntos
Córtex Motor , Feminino , Animais , Ratos , Propranolol/farmacologia , Locus Cerúleo , Neurônios , Norepinefrina
2.
Alcohol ; 101: 37-43, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395359

RESUMO

Cognitive control is key to regulating alcohol intake and preventing relapse. Behavioral inflexibility can prevent adaptive strategies such as mindfulness or other relapse-prevention behaviors. In a mouse model we investigated whether individual variability in behavioral flexibility (using attentional set-shifting task; ASST) predicts future alcohol intake. Adult male and female C57BL/6J mice were subjected to ASST using a bowl-digging paradigm where mice identify a baited bowl based on compound odor and textural cues. This was completed prior to any alcohol exposure. Individual performance across mice varied within the group. We integrated several metrics, specifically ASST stage completed, trials to completion, and errors performed to produce an individual performance index measure of behavioral flexibility. Afterward, ASST mice were trained to drink ethanol (15%, v/v, 1 h/day) for 3-4 weeks until intake stabilized. Using this prospective approach, we identified an inverse relationship between behavioral flexibility and drinking-less-flexible mice had a propensity to consume more alcohol. Similar relationships have been identified previously in non-human primates and rats. Our results show that the relationship between alcohol and behavioral flexibility is a robust trait that is conserved across species and can be used in mice to study neural substrates underlying these behaviors.


Assuntos
Consumo de Bebidas Alcoólicas , Individualidade , Consumo de Bebidas Alcoólicas/psicologia , Animais , Etanol , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Recidiva
3.
Alcohol Clin Exp Res ; 41(9): 1574-1583, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28753742

RESUMO

BACKGROUND: Chronic exposure to stress or alcohol can drive neuroadaptations that alter cognition. Alterations in cognition may contribute to alcohol use disorders by reducing cognitive control over drinking and maintenance of abstinence. Here we examined effects of combined ethanol (EtOH) and stress exposure on prefrontal cortex (PFC)-dependent cognition. METHODS: Adult male C57BL/6J mice were trained to drink EtOH (15%, v/v) on a 1 h/d 1-bottle schedule. Once stable, mice were exposed to cycles of chronic intermittent EtOH (CIE) or air-control vapor exposure (Air), followed by test cycles of 1 h/d EtOH drinking. During test drinking, mice received no stress (NS) or 10 minutes of forced swim stress (FSS) 4 hours before each test. This schedule produced 4 experimental groups: control, Air/NS; EtOH-dependent no stress, CIE/NS; nondependent stress, Air/FSS; or EtOH-dependent stress, CIE/FSS. After 2 cycles of CIE and FSS exposure, we assessed PFC-dependent cognition using object/context recognition and attentional set shifting. At the end of the study, mice were perfused and brains were collected for measurement of c-Fos activity in PFC and locus coeruleus (LC). RESULTS: CIE/FSS mice escalated EtOH intake faster than CIE/NS and consumed more EtOH than Air/NS across all test cycles. After 2 cycles of CIE/FSS, mice showed impairments in contextual learning and extradimensional set-shifting relative to other groups. In addition to cognitive dysfunction, CIE/FSS mice demonstrated widespread reductions in c-Fos activity within prelimbic and infralimbic PFC as well as LC. CONCLUSIONS: Together, these findings show that interactions between EtOH and stress exposure rapidly lead to disruptions in signaling across cognitive networks and impairments in PFC-dependent cognitive function.


Assuntos
Alcoolismo/psicologia , Depressores do Sistema Nervoso Central/toxicidade , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/psicologia , Etanol/toxicidade , Estresse Psicológico/psicologia , Animais , Atenção/efeitos dos fármacos , Disfunção Cognitiva/complicações , Genes fos/genética , Aprendizagem/efeitos dos fármacos , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/complicações , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA