Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932563

RESUMO

The impact of the polymeric matrix on the photophysical characteristics of monomeric dyes responsive to excited-state intramolecular proton transfer (ESIPT) was investigated through UV-Vis absorption as well as steady-state and time-resolved emission spectroscopies. For this purpose, two benzoxazole monomers (M1 and M2) with acryloyl groups at different positions in their molecular structures were employed to facilitate covalent bonding within a styrene chain. Our findings reveal significant variations in their excited-state properties due to the proximity of the acryloyl groups, which affects the energy barrier of the ESIPT reaction, the emission wavelength, and the balance between the normal and tautomeric forms. The experimental results were corroborated through theoretical investigations at the DFT/TDDFT level, specifically using the B3LYP-D3/def2-TZVP methodology. Three notable observations emerged: donor/acceptor groups at the meta/para positions induced electron distribution changes, causing red-shifted emission for M2; in the polymer film, particularly in PM1, intramolecular hydrogen bond deactivation favored N* emission over T* emission; and the zwitterionic character of the T* species. This study underscores the advantages of functionalization in polymers, which can lead to colorless films and prevalent N* or T* emission, and contributes valuable insights into molecular design strategies for tailoring the photophysical properties of polymeric materials.

2.
J Fluoresc ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507128

RESUMO

In this study, we present a comprehensive photophysical investigation of ESIPT-reactive benzazole derivatives in both solution and the solid state. These derivatives incorporate different chalcogen atoms (O, S, and Se) into their structures, and we explore how these variations impact their electronic properties in both ground and excited states. Changes in the UV-Vis absorption and fluorescence emission spectra were analyzed and correlated with the chalcogen atom and solvent polarity. In general, the spectral band of the benzazole derivative containing selenium was redshifted in both the ground and excited states compared to that of its oxygen and sulfur counterparts. Furthermore, we observed that the solvent played a distinctive role in influencing the ESIPT process within these compounds, underscoring once again the significant influence of the chalcogen atom on their photophysical behavior. Theoretical calculations provided a deeper understanding of the molecular dynamics, electronic structures, and photophysical properties of these compounds. These calculations highlighted the effect of chalcogen atoms on the molecular geometry, absorption and emission characteristics, and intramolecular hydrogen bonding, revealing intricate details of the ESIPT mechanism. The integration of experimental and computational data offers a detailed view of the structural and electronic factors governing the photophysical behavior of benzazole derivatives.

3.
Org Biomol Chem ; 21(46): 9242-9254, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966045

RESUMO

This study presents the synthesis of novel glycoconjugates by connecting benzazole and carbohydrate units with a 1,2,3-triazole linker. A simple synthetic route employing a copper(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) was utilized. The synthesized compounds exhibit excited-state intramolecular proton transfer (ESIPT), resulting in longer wavelength emission with a significantly large Stokes shift (∼10 000 cm-1). These compounds show potential as chemical sensors due to their ability to detect Cu2+ ions, causing a decrease in fluorescence emission (turn-off effect). Additionally, they demonstrate strong interaction with proteins, exemplified by their interaction with bovine serum albumin (BSA) as a model protein.


Assuntos
Cobre , Soroalbumina Bovina , Soroalbumina Bovina/química , Cobre/química , Glicoconjugados , Triazóis
4.
J Fluoresc ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542587

RESUMO

In this study, we present the synthesis of benzimidazo[1,2-a] quinoline-based heterocycles bearing organosulfur and organoselenium moieties through transition-metal-free cascade reactions involving a sequential intermolecular aromatic nucleophilic substitution (SNAr). Both sulfur and selenium derivatives presented absorption maxima located around 355 nm related to spin and symmetry allowing electronic 1π-π* transitions, and fluorescence emission at the violet-blue region (~440 nm) with relatively large Stokes shift. The fluorescence quantum yields were slightly influenced by the chalcogen, with the sulfur derivatives presenting higher values than the selenium analogs. In this sense, the quantum yields for selenium derivatives can probably be affected by the intersystem crossing or even the photoinduced electron transfer process (PET). The compounds were successfully applied in all-solution-processed organic light-emitting diodes (OLEDs), where poly(9-vinylcarbazole) was employed as a dispersive matrix generating single-layer device cells. The obtained electroluminescence spectra are a sum of benzimidazo[1,2-a]quinolines and PVK singlet and/or triplet emissive states, according to their respective energy band gaps. The best diode rendered a luminance of 25.4 cd⋅m-2 with CIE (0.17, 0.14) and current efficiency of 20.2 mcd⋅A-1, a fivefold improvement in comparison to the PVK device that was explained by a 50-fold increase of charge-carriers electrical mobility.

5.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298739

RESUMO

Excited-state chemistry relies on the communication between molecules, making it a crucial aspect of the field. One important question that arises is whether intermolecular communication and its rate can be modified when a molecule is confined. To explore the interaction in such systems, we investigated the ground and excited states of 4'-N,N-diethylaminoflavonol (DEA3HF) in an octa acid-based (OA) confined medium and in ethanolic solution, both in the presence of Rhodamine 6G (R6G). Despite the observed spectral overlap between the flavonol emission and the R6G absorption, as well as the fluorescence quenching of the flavonol in the presence of R6G, the almost constant fluorescence lifetime at different amounts of R6G discards the presence of FRET in the studied systems. Steady-state and time-resolved fluorescence indicate the formation of an emissive complex between the proton transfer dye encapsulated within water-soluble supramolecular host octa acid (DEA3HF@(OA)2) and R6G. A similar result was observed between DEA3HF:R6G in ethanolic solution. The respective Stern-Volmer plots corroborate with these observations, suggesting a static quenching mechanism for both systems.


Assuntos
Éteres Cíclicos , Rodaminas/química , Análise Espectral/métodos
6.
Molecules ; 26(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771137

RESUMO

In this study, the interactions of ESIPT fluorescent lipophile-based benzazoles with bovine serum albumin (BSA) were studied and their binding affinity was evaluated. In phosphate-buffered saline (PBS) solution these compounds produce absorption maxima in the UV region and a main fluorescence emission with a large Stokes shift in the blue-green regions due to a proton transfer process in the excited state. The interactions of the benzazoles with BSA were studied using UV-Vis absorption and steady-state fluorescence spectroscopy. The observed spectral quenching of BSA indicates that these compounds could bind to BSA through a strong binding affinity afforded by a static quenching mechanism (Kq~1012 L·mol-1·s-1). The docking simulations indicate that compounds 13 and 16 bind closely to Trp134 in domain I, adopting similar binding poses and interactions. On the other hand, compounds 12, 14, 15, and 17 were bound between domains I and III and did not directly interact with Trp134.


Assuntos
Benzotiazóis/química , Lipídeos/química , Soroalbumina Bovina/química , Animais , Bovinos , Fluorescência , Estrutura Molecular , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
7.
J Org Chem ; 86(15): 10140-10153, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34283602

RESUMO

A series of new 2,5-disubstituted selenophene derivatives are described from elemental selenium and 1,3-diynes in superbasic media. The activation of elemental selenium in a KOH/DMSO system allows cyclization with conjugated diynes at room temperature. The cyclization reaction is extended to a broad range of functional groups, for which photophysics were experimentally and theoretically investigated. The selenophene derivatives present absorption maxima in the UV-A region and fluorescence emission in the violet-to-blue region. Fluorescence decay profiles were obtained showing a monoexponential decay with fast fluorescence lifetimes (∼0.118 ns), as predicted by the Strickler-Berg relations. In general, in both investigations, no dependence on the solvent polarity on the absorption and emission maxima location was observed. On the other hand, solvents and substituents are shown to play a role in the fluorescence quantum yield values. In addition, a fluorescence self-quenching behavior could be observed, related to a photoinduced electron-transfer mechanism. Theoretical calculations performed at the MP2/ADC(2)/cc-pVDZ level of theory were performed in order to investigate the photophysical features of this series of selenophene derivatives.

8.
Phys Chem Chem Phys ; 23(2): 1146-1155, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33349817

RESUMO

Benzothiazole derivatives were used as models to study the excited-state intramolecular proton transfer (ESIPT) from an experimental and theoretical point of view. The experimental electronic and vibrational results were compared with a comprehensive selection of state-of-the-art computational methods in a workflow approach. The latter were performed based on modern techniques, such as DLPNO-CCSD(T), which gives the reference energies and current methodologies for ESIPT analysis, such as molecular dynamics and charge density difference testing. The theoretical vibrational results were focused on the stretch vibrational-mode of the hydroxyl group, which indicated a large increase in the intramolecular hydrogen bond strength, which facilitates the ESIPT process. Theoretically, the optimization of a large number of molecules shows that π-stacking plays a fundamental role in benzothiazole stabilization, with a remarkably strong intramolecular hydrogen bond. The potential energy surface of the ESIPT reactive benzothiazole (4HBS) has a clear transition state where ESIPT is easily observed with a large difference in energy between the enol and keto tautomer. Additionally, molecular dynamics showed that the ESIPT process occurs very fast. The tautomer appears around 8.7 fs and the enolic form is regenerated in just 24 fs, closing the Förster cycle. The calculated Stokes shift could be related to the ESIPT process and the experimental solid-state emission spectrum matched almost perfectly with the theoretical one. In contrast, for the non-ESIPT benzothiazole (4HBSN), the agreement between theory and experiment was limited, probably due to intermolecular interaction effects that are not considered in these calculations.

9.
Environ Technol ; 42(7): 1038-1052, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31407626

RESUMO

The impact of cerium (Ce) and neodymium (Nd) rare-earth metal doping of TiO2 prepared by the hydrothermal method was investigated to tailor effective photocatalytic degradation of coloured wastewater under UV or visible illumination. The hydrothermal treatment of TiO2 decreased the pHpzc from 6.3 to 3.1-3.8 favouring the affinity for cationic water contaminants. Doping with Ce and Nd modified the crystallinity and the morphology of the photocatalysts and significantly increased the BET surface area and the adsorption capacity of cationic dyes. The photocatalytic activity under UV light irradiation decreased due to shielding of the catalyst active area by excessive amount of dye adsorbed. Conversely, the photocatalytic activity of the Ce and Nd doped TiO2 increased under visible light irradiation by 1.2 times as a result of the dye photosensitization effect. It was demonstrated that two-steps dark adsorption and photocatalytic reaction or one-step simultaneous adsorption and reaction can produce significantly different results for the photocatalytic degradation of dyes in coloured waters, the rate being controlled by the competitive adsorption of the reacting organics and the H2O/OH- species. The reaction is driven by the radical oxygen species (ROS) formed on the catalyst surface the nature of which, differs under UV or visible light irradiation. The Ce-doped TiO2 and Nd-doped TiO2 photocatalysts with 0.5% rare-earth content were found to be efficient in the degradation of MB in aqueous solution, removing the colour and reducing the toxicity of wastewaters.


Assuntos
Cério , Águas Residuárias , Catálise , Cor , Luz , Neodímio , Titânio
10.
Methods Appl Fluoresc ; 8(4): 045006, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021214

RESUMO

Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS) was for the first time successfully used to evaluate an intricate photophysical behavior, where deprotonation on the electronic ground state (S0), intra and intermolecular proton transfer processes (ESPT and ESIPT) on the electronic excited state (S1) can simultaneously be presented. In this sense, the organic dye 2-(2'-hydroxyphenyl)benzothiazole (HBT) was used as a proof-of-concept model, where MCR-ALS showed to be a powerful tool for discriminate chemical reactions that occur concomitantly on different potential energy surfaces, which include photochemical reactions. As a result, the chemometric method showed to be a straightforward approach for the determination of the acidic strengths of those equilibria were estimated as 8.61 and 1.11 to hydroxyl deprotonation on electronic ground and excited states, respectively.

11.
ACS Omega ; 4(8): 13509-13519, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31460480

RESUMO

This study presents new Tröger's bases bearing glycosyl moieties obtained from a copper-catalyzed azide-alkyne cycloaddition reaction. The Tröger's bases present absorption maxima close to 275 nm related to fully spin and symmetry-allowed electronic transitions. The main fluorescence emission located at 350 nm was observed with no influence on the glycosyl moieties. Furthermore, protein detection studies have been performed using bovine serum albumin (BSA) as a model protein, and results have shown a strong interaction between some of the compounds through a static fluorescence suppression mechanism related to the formation of a glycoconjugate-BSA complex favored by the glycosyl subunit. Moreover, docking was also studied for better understanding the suppression mechanism and indicated that the glycosyl and triazole moieties increase the affinity with BSA.

12.
Phys Chem Chem Phys ; 21(8): 4408-4420, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30729973

RESUMO

This study presents the synthesis, characterisation and theoretical calculations of compounds that contain electron donor and withdrawing groups connected through a π-conjugated benzazolic structure. The compounds in solution show an absorption maximum in the UV-visible spectrum (380-390 nm) due to spin and symmetry allowed electronic 1ππ* transitions with no clear evidence for charge transfer in either compound in the ground state. A fluorescence emission located in the violet-blue-green region, tailored by solvent polarity, with a large Stokes shift was observed. Taking the long-wavelength emission into account, the Lippert-Mataga plot indicates a positive solvatochromism in the solvent polarity function (Δf) range 0.02-0.20, related to the occurrence of an ICT mechanism in the excited state. At Δf greater than 0.20, the polarity of the medium seems no longer to increase the stabilization of the compounds, reaching a plateau. Time-dependent density functional theory (TD-DFT) and resolution-of-identity second-order approximate coupled-cluster (RI-CC2) calculations were also used to better understand the excited state of these compounds. The results indicated that ESIPT was disfavoured in the compounds, mainly in polar solvents, and the emission wavelengths were primarily associated with ICT. In summary, in these push-pull compounds, the electron donating and withdrawing groups do not favour the ESIPT process.

13.
Phys Chem Chem Phys ; 21(3): 1172-1182, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30525173

RESUMO

A salicylidene derivative, N,N'-bis(salicylidene)-(2-(3',4'-diaminophenyl)benzothiazole) (BTS), reactive in the Excited State Intramolecular Proton Transfer (ESIPT) process, was synthesized and its photophysical properties were evaluated, presenting an emission covering the entire range of the visible spectrum. Due to its broad emission band, BTS was successfully tested as an active layer in solution-processed organic light-emitting diodes with white-light emission. These diodes were prepared using solution-based protocols with the dye solubilized in a poly(9-vinylcarbazole) matrix. Different guest : host (polymer : BTS) molar ratios were used to optimize the diode performance. The optimized architecture rendered the best so far all-solution-processed ESIPT OLED with a luminance of 34 cd m-2 at 13.5 V with CIE coordinates 0.31, 0.40.

14.
J Org Chem ; 83(24): 15210-15224, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30472829

RESUMO

This work describes the synthesis of photoactive proton transfer compounds based on the benzazolic core containing the azide group. The compounds present absorption in the UV region and fluorescence emission in the visible region of the spectra with large Stokes shift due to a phototautomerism in the excited state (ESIPT). The azide location on the benzazolic structure presented a noteworthy role on their photophysics, leading to fluorescence quenching. A photophysical study was performed in the presence of NaHS to evaluate their application as an H2S sensor. The methodology employed was the reduction of azides to amines using NaHS to mimic H2S, resulting in an off-on response fluorescence mechanism. The observed photophysical features were successfully used to explore the azides as fluorescent probes in biological media. In addition, DFT and TD-DFT calculations with the CAM-B3LYP/cc-pVDZ and CAM-B3LYP/jun-cc-pVTZ level, respectively, were performed in order to understand the photophysics features of azide derivatives, where the main interest was to investigate the fluorescence quenching experimentally observed in the azide derivatives.


Assuntos
Azidas/química , Teoria da Densidade Funcional , Sulfeto de Hidrogênio/análise , Imagem Molecular , Prótons , Linhagem Celular Tumoral , Humanos , Sulfeto de Hidrogênio/química , Modelos Moleculares , Conformação Molecular , Espectrometria de Fluorescência
15.
J Colloid Interface Sci ; 519: 232-241, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29501995

RESUMO

Investigations focused on the interactions of nanoparticles with lectins are relevant since it is well accepted that such proteins can be recognized by carbohydrates as parts of cell membranes. This can ultimately enhance the cellular uptake of the produced assemblies. In this framework, the physical interactions of phosphatidylcholine (PC) liposomes and the Bauhinia variegate lectin (BVL) are reported here. BVL-liposome interactions were characterized by a variety of techniques to understand the influence of BVL in the structural features, thermodynamic and spectroscopic properties of the hybrid material. The produced system is composed of 56% w/w lectin, and the scattering techniques show the presence of stable vesicular structures with a mean diameter DH ∼ 100 nm. The FTIR and NMR results showed a strong lectin effect on the PC choline region, restricting the rotational motion of the lipid group. The BVL-liposome interaction promoted hardening of the protein as evidenced by circular dichroism spectroscopy. The photophysics results suggest higher rigidity of the system in the presence of BVL. The BVL may be present in the inner or outer polar surface of the liposomes. The system was shown to be relatively stable and therefore potentially useful for carbohydrate recognition of nanoparticles.


Assuntos
Bauhinia/química , Lipossomos/química , Nanopartículas/química , Fosfatidilcolinas/química , Lectinas de Plantas/química , Tamanho da Partícula , Conformação Proteica , Propriedades de Superfície
16.
Photochem Photobiol Sci ; 17(2): 231-238, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29313047

RESUMO

This work presents the determination of acidic strengths at the electronic ground and excited states (pKa and ) of three flavonol derivatives using electronic absorption and fluorescence emission spectroscopy. The differences of the pKa and values were successfully correlated with the molecular structures according to the substitution pattern at the flavonol structure (hydrogen, diethylamino or fluoro moieties). In order to obtain more information about the observed photoacidity of these superacids, geometry optimizations and excitation energy calculations were performed at the CAM-B3LYP/6-311++G(d,p) level for their neutral, protonated and deprotonated species.

17.
Phys Chem Chem Phys ; 14(31): 10994-1001, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22782066

RESUMO

Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

18.
J Photochem Photobiol B ; 99(3): 126-32, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20385502

RESUMO

The microscopic morphology of Fonsecaea pedrosoi ATCC46428 was observed using two benzazole derivatives, 2-(2'-hydroxyphenyl)benzoxazole and 2-(5'-amino-2'-hydroxyphenyl)benzoxazole, which emit intense fluorescence by a proton transfer mechanism in the electronically excited state (ESIPT). The cell surface could be successfully stained with fluorescent dye solutions of 10 microM-10 mM using two different fast and cost-effective procedures. At these concentrations, any structure or dye crystallization could be observed. Concerning the external microstructural details, only the amino derivative allowed the differentiation between hyphae and conidia. These dyes presented some advantages comparing to commercial dyes, since the stained cells showed high chemical, thermal and photochemical stability during the experiments and also after several months of storage at room temperature and normal light exposition. Procedure 1 presented the advantage to be used when heating can change the chemical or biochemical cell composition. On the other hand Procedure 2 showed to be useful as a routine methodology for cells staining. The results allowed to propose a simple and highly sensitive assay to study the F. pedrosoi micromorphology by epifluorescence microscopy. This methodology can probably be extended for other fungi of clinical interest.


Assuntos
Ascomicetos/citologia , Benzoxazóis/química , Corantes Fluorescentes/química , Coloração e Rotulagem/métodos , Microscopia de Fluorescência , Prótons , Espectrofotometria Ultravioleta , Coloração e Rotulagem/economia
19.
Photochem Photobiol Sci ; 6(1): 99-102, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17200744

RESUMO

The 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzoxazole dye was successfully applied as label of rice proteins during the alkaline extraction of starch. Direct fluorescence measurements were used to observe the presence of proteins labelled in different steps of rice starch extraction. The results were compared to those obtained with the well-known biuret colorimetric test. Whereas the colorimetric test indicates the absence of protein after the third extraction step, the fluorescence emission of the conjugate could be observed in all extraction steps. The separation of different rice proteins could also be observed.


Assuntos
Benzoxazóis/química , Corantes Fluorescentes/química , Isotiocianatos/química , Oryza/química , Proteínas de Plantas/análise , Amido/química , Sondas Moleculares , Estrutura Molecular , Proteínas de Plantas/isolamento & purificação , Sensibilidade e Especificidade , Amido/isolamento & purificação
20.
Photochem Photobiol Sci ; 4(3): 254-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15738992

RESUMO

Three new benzazole isothiocyanate fluorescent dyes, 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzoxazole, 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzothiazole and 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzimidazole were synthesised, purified until optical purity grade and characterised by spectroscopic techniques. UV/VIS and steady-state fluorescence were also applied to characterise the photophysical behaviour of the dyes. These dyes exhibit an intense fluorescence emission with a large Stokes shift, inherent to the class of benzazoles which relax by the excited state intramolecular proton transfer (ESIPT) mechanism. The dyes were studied for labeling bovine serum albumin (BSA), resulting conjugates BSA-dye with a remarkable photostability under UV/VIS radiation in relation to classical protein labels. The resulting conjugates presented fluorescence in the blue-green region. Direct fluorescence detection of protein-labeled with those dyes after polyacrylamide gel electrophoresis indicates their potential use as fluorescent probes for proteins.


Assuntos
Benzoxazóis/química , Corantes Fluorescentes/química , Isotiocianatos/química , Soroalbumina Bovina/química , Azóis , Benzoxazóis/síntese química , Corantes Fluorescentes/síntese química , Isotiocianatos/síntese química , Prótons , Soroalbumina Bovina/análise , Espectrometria de Fluorescência , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA