Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0305710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990850

RESUMO

There is an urgent unmet need for more targeted and effective treatments for advanced epithelial ovarian cancer (EOC). The emergence of drug resistance is a particular challenge, but small molecule covalent inhibitors have promise for difficult targets and appear less prone to resistance. Michael acceptors are covalent inhibitors that form bonds with cysteines or other nucleophilic residues in the target protein. However, many are categorized as pan-assay interference compounds (PAINS) and considered unsuitable as drugs due to their tendency to react non-specifically. Targeting RPN13/ADRM1-mediated substrate recognition and deubiquitination by the proteasome 19S Regulatory Particle (RP) is a promising treatment strategy. Early candidate RPN13 inhibitors (iRPN13) produced a toxic accumulation of very high molecular weight polyubiquitinated substrates, resulting in therapeutic activity in mice bearing liquid or solid tumor models, including ovarian cancer; however, they were not drug-like (PAINS) because of their central piperidone core. Up284 instead has a central spiro-carbon ring. We hypothesized that adding a guanidine moiety to the central ring nitrogen of Up284 would produce a compound, RA475, with improved drug-like properties and therapeutic activity in murine models of ovarian cancer. RA475 produced a rapid accumulation of high molecular polyubiquitinated proteins in cancer cell lines associated with apoptosis, similar to Up284 although it was 3-fold less cytotoxic. RA475 competed binding of biotinylated Up284 to RPN13. RA475 shows improved solubility and distinct pharmacodynamic properties compared to Up284. Specifically, tetraubiquitin firefly luciferase expressed in leg muscle was stabilized in mice more effectively upon IP treatment with RA475 than with Up284. However, pharmacologic analysis showed that RA475 was more rapidly cleared from the circulation, and less orally available than Up284. RA475 shows reduced ability to cross the blood-brain barrier and in vitro inhibition of HERG. Treatment of mice with RA475 profoundly inhibited the intraperitoneal growth of the ID8-luciferase ovarian tumor model. Likewise, RA475 treatment of immunocompetent mice inhibited the growth of spontaneous genetically-engineered peritoneal tumor, as did weekly cisplatin dosing. The combination of RA475 and cisplatin significantly extended survival compared to individual treatments, consistent with synergistic cytotoxicity in vitro. In sum, RA475 is a promising candidate covalent RPN13i with potential utility for treatment of patients with advanced EOC in combination with cisplatin.


Assuntos
Neoplasias Ovarianas , Feminino , Animais , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Camundongos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico , Compostos de Espiro/química , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma Epitelial do Ovário/tratamento farmacológico , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Guanidinas/química , Peptídeos e Proteínas de Sinalização Intracelular
2.
Vaccines (Basel) ; 12(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932417

RESUMO

Human papillomavirus (HPV) is a prevalent cause of mucosal and cutaneous infections and underlying conditions ranging from benign warts to anogenital and oropharyngeal cancers affecting both males and females, notably cervical cancer. Cervical cancer is the fourth leading cause of cancer deaths among women globally and is the most impactful in low- and middle-income countries (LMICs), where the costs of screening and licensed L1-based HPV vaccines pose significant barriers to comprehensive administration. Additionally, the licensed L1-based HPV vaccines fail to protect against all oncogenic HPV types. This study generated three independent lots of an L2-based target antigen (LBTA), which was engineered from conserved linear L2-protective epitopes (aa11-88) from five human alphapapillomavirus genotypes in E. coli under cGMP conditions and adjuvanted with aluminum phosphate. Vaccination of rabbits with LBTA generated high neutralizing antibody titers against all 17 HPV types tested, surpassing the nine types covered by Gardasil®9. Passive transfer of naïve mice with LBTA antiserum revealed its capacity to confer protection against vaginal challenge with all 17 αHPV types tested. LBTA shows stability at room temperature over >1 month. Standard in vitro and in vivo toxicology studies suggest a promising safety profile. These findings suggest LBTA's promise as a next-generation vaccine with comprehensive coverage aimed at reducing the economic and healthcare burden of cervical and other HPV+ cancers in LMICs, and it has received regulatory approval for a first-in-human clinical study (NCT05672966).

4.
Laryngoscope ; 134(6): 2819-2825, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193541

RESUMO

OBJECTIVES: Recurrent respiratory papillomatosis (RRP) is caused by human papilloma virus (HPV) infection of the aerodigestive tract that significantly impacts quality-of-life including the ability to communicate and breathe. Treatment was traditionally limited to serial ablative procedures in the O.R. with possible local adjuvant therapy, but new systemic therapies, such as Vascular endothelial growth factor (VEGF) inhibitors, are showing significant promise. This study aims to determine whether rationale exists for combination therapeutic approaches using VEGF inhibitors and/or immune checkpoint blockade. METHODS: Using fresh specimens from the O.R., we performed flow cytometry on papilloma, normal adjacent tissue, and blood. Papilloma and surrounding tissue were examined for expression of PD-L1, PD-L2, Galectin-9, VEGFR2, and VEGFR3. CD8+ and CD4+ T cells were assayed for expression of PD-1, TIGIT, LAG3, and TIM3. RESULTS: Our data shows that papilloma tissue exhibits significantly higher levels of PD-L1 and PD-L2 compared to adjacent tissue. Elevated levels of the VEGF receptor VEGFR3 were also observed in papilloma tissue. When examining T cells within the papilloma, elevated PD-1 and TIGIT expression was observed on CD8+ T cells, while levels of PD-1, TIGIT, and TIM3 were elevated on CD4+ T cells compared to PBMCs. Heterogenous marker expression was observed between individuals. CONCLUSIONS: Our analysis shows that RRP tissue shows elevated levels of multiple immune check point targets and VEGFR3, with varied patterns unique to each papilloma patient. Some of these immune checkpoint markers already have novel immunotherapies available or in development, providing molecular rationale to offer these systemic treatments to selected patients affected by RRP alongside VEGF inhibitors. Laryngoscope, 134:2819-2825, 2024.


Assuntos
Infecções por Papillomavirus , Receptores de Fatores de Crescimento do Endotélio Vascular , Infecções Respiratórias , Humanos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/complicações , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Feminino , Adulto , Citometria de Fluxo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Pessoa de Meia-Idade , Proteínas de Checkpoint Imunológico/metabolismo
5.
J Ovarian Res ; 17(1): 19, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225646

RESUMO

BACKGROUND: MUC16 is a heavily glycosylated cell surface mucin cleaved in the tumor microenvironment to shed CA125. CA125 is a serum biomarker expressed by > 95% of non-mucinous advanced stage epithelial ovarian cancers. MUC16/CA125 contributes to the evasion of anti-tumor immunity, peritoneal spread and promotes carcinogenesis; consequently, it has been targeted with antibody-based passive and active immunotherapy. However, vaccination against this self-antigen likely requires breaking B cell tolerance and may trigger autoimmune disease. Display of self-antigens on virus-like particles (VLPs), including those produced with human papillomavirus (HPV) L1, can efficiently break B cell tolerance. RESULTS: A 20 aa juxta-membrane peptide of the murine MUC16 (mMUC16) or human MUC16 (hMUC16) ectodomain was displayed either via genetic insertion into an immunodominant loop of HPV16 L1-VLPs between residues 136/137, or by chemical coupling using malemide to cysteine sulfhydryl groups on their surface. Female mice were vaccinated intramuscularly three times with either DNA expressing L1-MUC16 fusions via electroporation, or with alum-formulated VLP chemically-coupled to MUC16 peptides. Both regimens were well tolerated, and elicited MUC16-specific serum IgG, although titers were higher in mice vaccinated with MUC16-coupled VLP on alum as compared to L1-MUC16 DNA vaccination. Antibody responses to mMUC16-targeted vaccination cross-reacted with hMUC16 peptide, and vice versa; both were reactive with the surface of CA125+ OVCAR3 cells, but not SKOV3 that lack detectable CA125 expression. Interestingly, vaccination of mice with mMUC16 peptide mixed with VLP and alum elicited mMUC16-specific IgG, implying VLPs provide robust T help and that coupling may not be required to break tolerance to this epitope. CONCLUSION: Vaccination with VLP displaying the 20 aa juxta-membrane MUC16 ectodomain, which includes the membrane proximal cleavage site, is likely to be well tolerated and induce IgG targeting ovarian cancer cells, even after CA125 is shed.


Assuntos
Compostos de Alúmen , Neoplasias Ovarianas , Vacinas de Partículas Semelhantes a Vírus , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/genética , Epitopos , Apoptose , Linhagem Celular Tumoral , Peptídeos , Imunoglobulina G , DNA , Antígeno Ca-125/genética , Microambiente Tumoral , Proteínas de Membrana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA