Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631258

RESUMO

Plant and herbal essential oils (EOs) offer a wide range of pharmacological actions that include anticancer effects. Here, we evaluated the cytotoxic activity of EO from Lippia alba (chemotype linalool), L. alba (chemotype dihydrocarvone, LaDEO), Clinopodium nepeta (L.) Kuntze (CnEO), Eucalyptus globulus, Origanum × paniculatum, Mentha × piperita, Mentha arvensis L., and Rosmarinus officinalis L. against human lung (A549) and colon (HCT-116) cancer cells. The cells were treated with increasing EO concentrations (0-500 µL/L) for 24 h, and cytotoxic activity was assessed. LaDEO and CnEO were the most potent EOs evaluated (IC50 range, 145-275 µL/L). The gas chromatography-mass spectrometry method was used to determine their composition. Considering EO limitations as therapeutic agents (poor water solubility, volatilization, and oxidation), we evaluated whether LaDEO and CnEO encapsulation into solid lipid nanoparticles (SLN/EO) enhanced their anticancer activity. Highly stable spherical SLN/LaDEO and SLN/CnEO SLN/EO were obtained, with a mean diameter of 140-150 nm, narrow size dispersion, and Z potential around -5mV. EO encapsulation strongly increased their anticancer activity, particularly in A549 cells exposed to SLN/CnEO (IC50 = 66 µL/L CnEO). The physicochemical characterization, biosafety, and anticancer mechanisms of SLN/CnEO were also evaluated in A549 cells. SLN/CnEO containing 97 ± 1% CnEO was highly stable for up to 6 months. An increased in vitro CnEO release from SLN at an acidic pH (endolysosomal compartment) was observed. SLN/CnEO proved to be safe against blood components and non-toxic for normal WI-38 cells at therapeutic concentrations. SLN/CnEO substantially enhanced A549 cell death and cell migration inhibition compared with free CnEO.

2.
Front Chem ; 10: 914126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873038

RESUMO

Violacein (Viol) is a bacterial purple water-insoluble pigment synthesized by Chromobacterium violaceum and other microorganisms that display many beneficial therapeutic properties including anticancer activity. Viol was produced, purified in our laboratory, and encapsulated in a nanostructured lipid carrier (NLC). The NLC is composed of the solid lipid myristyl myristate, an oily lipid mixture composed of capric and caprylic acids, and the surfactant poloxamer P188. Dormant lipase from Rhizomucor miehei was incorporated into the NLC-Viol to develop an active release system. The NLC particle size determined by dynamic light scattering brings around 150 nm particle size and ζ≈ -9.0 mV with or without lipase, but the incorporation of lipase increase the PdI from 0.241 to 0.319 (≈32%). For scaffold development, a 2.5 hydroxypropyl methylcellulose/chitosan ratio was obtained after optimization of a composite for extrusion in a 3D-bioprinter developed and constructed in our laboratory. Final Viol encapsulation efficiency in the printings was over 90%. Kinetic release of the biodye at pH = 7.4 from the mesh containing NLC-lipase showed roughly 20% Viol fast release than without the enzyme. However, both Viol kinetic releases displayed similar profiles at pH = 5.0, where the lipase is inactive. The kinetic release of Viol from the NLC-matrices was modeled and the best correlation was found with the Korsmeyer-Peppas model (R2 = 0.95) with n < 0.5 suggesting a Fickian release of Viol from the matrices. Scanning Electron Microscope (SEM) images of the NLC-meshes showed significant differences before and after Viol's release. Also, the presence of lipase dramatically increased the gaps in the interchain mesh. XRD and Fourier Transform Infrared (FTIR) analyses of the NLC-meshes showed a decrease in the crystalline structure of the composites with the incorporation of the NLC, and the decrease of myristyl myristate in the mesh can be attributed to the lipase activity. TGA profiles of the NLC-meshes showed high thermal stability than the individual components. Cytotoxic studies in A549 and HCT-116 cancer cell lines revealed high anticancer activity of the matrix mediated by mucoadhesive chitosan, plus the biological synergistic activities of violacein and lipase.

3.
Bioengineered ; 13(6): 14227-14258, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35734783

RESUMO

Pigments are among the most fascinating molecules found in nature and used by human civilizations since the prehistoric ages. Although most of the bio-dyes reported in the literature were discovered around the eighties, the necessity to explore novel compounds for new biological applications has made them resurface as potential alternatives. Prodigiosin (PG) is an alkaloid red bio-dye produced by diverse microorganisms and composed of a linear tripyrrole chemical structure. PG emerges as a really interesting tool since it shows a wide spectrum of biological activities, such as antibacterial, antifungal, algicidal, anti-Chagas, anti-amoebic, antimalarial, anticancer, antiparasitic, antiviral, and/or immunosuppressive. However, PG vehiculation into different delivery systems has been proposed since possesses low bioavailability because of its high hydrophobic character (XLogP3-AA = 4.5). In the present review, the general aspects of the PG correlated with synthesis, production process, and biological activities are reported. Besides, some of the most relevant PG delivery systems described in the literature, as well as novel unexplored applications to potentiate its biological activity in biomedical applications, are proposed.


Assuntos
Antineoplásicos , Prodigiosina , Antibacterianos/farmacologia , Antifúngicos , Humanos , Prodigiosina/farmacologia , Serratia marcescens/química
4.
Heliyon ; 6(12): e05639, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33367122

RESUMO

Linalool and 1,8-cineole are plant-derived isoprenoids with anticancer activities in lung cancer cells, nevertheless, the cellular and molecular mechanisms of action remain poorly understood. The purpose of this study was to determine the anticancer mechanisms of action of linalool and 1,8-cineole in lung adenocarcinoma A549 cells. Linalool (0-2.0 mM) and 1,8-cineole (0-8.0 mM) inhibited cell proliferation by inducing G0/G1 and/or G2/M cell cycle arrest without affecting cell viability of normal lung WI-38 cells. None of the two monoterpenes were able to induce apoptosis, as observed by the lack of caspase-3 and caspase-9 activation, PARP cleavage, and DNA fragmentation. Linalool, but not 1,8-cineole, increased reactive oxygen species production and mitochondrial membrane potential depolarization. Reactive oxygen species were involved in cell growth inhibition and mitochondrial depolarization induced by linalool since the antioxidant N-acetyl-L-cysteine prevented both effects. Besides, linalool (2.0 mM) and 1,8-cineole (8.0 mM) inhibited A549 cell migration. The combination of each monoterpene with simvastatin increased the G0/G1 cell cycle arrest and sensitized cells to apoptosis compared with simvastatin alone. Our results showed that both monoterpenes might be promising anticancer agents with antiproliferative, anti-metastatic, and sensitizer properties for lung cancer therapy.

5.
Mater Sci Eng C Mater Biol Appl ; 116: 111152, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806328

RESUMO

A nanocomposite based on bacterial cellulose (BC) containing montmorillonite (MMT) modified with silver (BC-MMT-Ag) was developed to be used as potential scaffold for wound healing. Montmorillonite was suspended in silver nitrate solution to incorporate silver in the matrix by ion exchange. The derivative silver clay suspension was used to modify bacterial cellulose membranes by ex situ technique. The BC nanocomposite was analyzed by thermal analysis, scanning electron microscopy, Fourier transform infrared and electron dispersion spectroscopies, X-ray diffraction, and rehydration capacity. The antimicrobial activity of the silver montmorillonite-bacterial cellulose nanocomposite was challenged in cultures of Gram(+) Staphylococcus aureus and Gram(-) Pseudomonas aeruginosa, and showed inhibition of growth in agar plates and biofilm formation as revealed by live-dead assay. Cytotoxicity of BC nanocomposites containing 1% to 25% of MMT-Ag showed good in vitro biocompatibility with L929 fibroblast cells.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Antibacterianos/farmacologia , Bentonita , Celulose , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização , Difração de Raios X
6.
Nutr Metab Cardiovasc Dis ; 30(9): 1590-1599, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605883

RESUMO

BACKGROUND AND AIMS: Hypercholesterolemia and oxidative stress are two of the most important risk factors for atherosclerosis. The aim of the present work was to evaluate mandarin (Citrus reticulata) peel oil (MPO) in cholesterol metabolism and lipid synthesis, and its antioxidant capacity. METHODS AND RESULTS: Incubation of hepatic HepG2 cells with MPO (15-60 µL/L) reduced cholesterogenesis and saponifiable lipid synthesis, demonstrated by [14C]acetate radioactivity assays. These effects were associated with a decrease in a post-squalene reaction of the mevalonate pathway. Molecular docking analyses were carried out using three different scoring functions to examine the cholesterol-lowering property of all the components of MPO against lanosterol synthase. Docking simulations proposed that minor components of MPO monoterpenes, like alpha-farnesene and neryl acetate, as well the major component, limonene and its metabolites, could be partly responsible for the inhibitory effects observed in culture assays. MPO also decreased RAW 264.7 foam cell lipid storage and its CD36 expression, and prevented low-density lipoprotein (LDL) lipid peroxidation. CONCLUSION: These results may imply a potential role of MPO in preventing atherosclerosis by a mechanism involving inhibition of lipid synthesis and storage and the decrease of LDL lipid peroxidation.


Assuntos
Antioxidantes/farmacologia , Aterosclerose/prevenção & controle , Colesterol/metabolismo , Citrus , Dislipidemias/tratamento farmacológico , Células Espumosas/efeitos dos fármacos , Frutas , Hepatócitos/efeitos dos fármacos , Hipolipemiantes/farmacologia , Lipoproteínas LDL/metabolismo , Óleos de Plantas/farmacologia , Animais , Antioxidantes/isolamento & purificação , Aterosclerose/etiologia , Aterosclerose/metabolismo , Antígenos CD36/metabolismo , Citrus/química , Dislipidemias/complicações , Dislipidemias/metabolismo , Células Espumosas/metabolismo , Frutas/química , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hipolipemiantes/isolamento & purificação , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Óleos de Plantas/isolamento & purificação , Células RAW 264.7
7.
Chem Biol Interact ; 320: 109029, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32119866

RESUMO

Geraniol (GOH), like other plant-derived natural bioactive compounds, has been found to possess antiproliferative properties that are essential to cope with malignant tumors. However, the mechanisms of molecular action of GOH are not fully elucidated. The aim of this study was to evaluate the effect of GOH on some oxidative parameters in human tumor cell lines (HepG2 and A549). Cytotoxicity evaluated in cell lines by the MTT assay, genotoxicity by the comet assay, and lipid peroxidation by the TBARS. The activities of antioxidant the enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), were also analyzed. Additionally, intracellular reactive oxygen species (ROS), nitric oxide, and lactate production were determined in HepG2 cells. Both tumor cell lines showed a clear concentration-dependent response to GOH in several of the parameters evaluated. Lipids turned out to be more sensitive than DNA to oxidative damage induced by GOH. TBARS levels increased with respect to control (p < 0.05) by 33% and 122% in HepG2 and A549 cells, respectively treated with 200 µM GOH. However, GOH caused a statistically significant decrease in SOD and CAT activities in HepG2 cells only. GST was not affected in any cell lines. GOH induced the production of ROS but not nitric oxide in HepG2, which shows that ROS were mainly responsible for oxidative damage. Lactate release increased statistically significantly compared to control (p < 0.001), by 41% and 86% at 200 and 800 µM GOH respectively, showing that this monoterpene also affected the glycolytic pathway in HepG2 cells. These results suggest that oxidative stress could mediate the anti-proliferative effects of GOH in HepG2 and A549 cells.


Assuntos
Monoterpenos Acíclicos/farmacologia , Proliferação de Células , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Monoterpenos Acíclicos/administração & dosagem , Monoterpenos Acíclicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Estrutura Molecular
8.
Life Sci ; 243: 117271, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926243

RESUMO

AIMS: 1,8-Cineole is a plant-derived monoterpene and a major constituent of Eucalyptus essential oil. Previously, we demonstrated that 1,8-cineole inhibited hepatocellular carcinoma (HCC) HepG2 cell growth. However, the underlying mechanisms remain unknown. Here, we evaluated the mechanisms of action of 1,8-cineole and the potential benefits of its combination with anticancer compounds harboring "anti-senescence" properties in HepG2 cells. MAIN METHODS: Cell viability was determined by the MTT assay. Cell cycle was assessed through flow cytometry (FC) and western blot (WB). Senescence was determined by the SA-ß-galactosidase assay, and apoptosis by caspase-3 activity, WB, and TUNEL. MAPKs (ERK, JNK, and p38), AMPK, and Akt/mTOR were analyzed by WB. Reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) were evaluated by FC and fluorescence microscopy. KEY FINDINGS: 1,8-Cineole inhibited cell proliferation by promoting G0/G1 arrest. While 1,8-cineole was unable to trigger apoptosis, it induced cellular senescence. 1,8-Cineole promoted ROS production, ΔΨm depolarization, AMPK, ERK, and p38 activation and mTOR inhibition. Antioxidants, like N-acetyl-L-cysteine and vitamins, prevented HepG2 cell growth inhibition and senescence induced by 1,8-cineole. Pre-incubation with 1,8-cineole sensitized HepG2 cells to the anti-senescence compounds, quercetin, simvastatin, U0126, and SB202190. Combinations of 1,8-cineole and each compound synergistically inhibited cell viability, and combined treatment with 1,8-cineole and simvastatin induced apoptosis. SIGNIFICANCE: 1,8-Cineole induces G0/G1 arrest and senescence in HepG2 cells through oxidative stress and MAPK, AMPK, and Akt/mTOR pathways, and sensitizes cells to anti-senescence drugs, suggesting that 1,8-cineole has potential as an antineoplastic and adjuvant compound in combination with anti-senescence drugs in HCC therapy.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Eucaliptol/farmacologia , Fase G1/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Indução Enzimática , Eucaliptol/administração & dosagem , Células Hep G2 , Humanos , Proteínas Quinases/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
9.
RSC Adv ; 10(49): 29336-29346, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521105

RESUMO

Violacein (Viol) is a pigment produced by several Gram-negative bacteria with many bioactivities, such as anticancer, virucide, and antiparasitic. However, violacein is insoluble under physiological conditions preventing its potential therapeutic uses. Surface-active ionic liquids (SAILs) based on the cation 1-alkylimidazolium ([C n Him]) with n = 10 to 16 alkyl carbon side chain lengths and acetate, bromide, methanesulfonate (S) or trifluoroacetate (F) as counterions were synthesized and screened to dissolve Viol in micellar aqueous media and for toxicological studies on the human lung carcinoma A549 cell line. Screening allowed the selection of 1.5 × 10-3% (w/v) [C16Him]-S because it combines low cytotoxicity with 71.5% cell viability and good interaction with 95.2% of the violacein kept in micellar solution for at least 48 h. [Viol-([C16Him]-S)] complex was used to develop an efficient hybrid solid lipid nanoparticle (SLN) carrier based on myristyl myristate and poloxamer 188 and tailored with folate to target cancer cells. Cellular SLN uptake was evaluated with fluorescent DiOC18 on A549, HCT-116, and HeLa cell lines expressing or not the folate receptor. The results showed fivefold incorporation of Viol nanoparticles in HCT-116 and HeLa cell cultures, displaying a high level of folate receptor. Biophysical characterization of the hybrid solid lipid carrier containing Viol was performed by dynamic light scattering, Fourier transform infrared, X-ray diffraction and X-ray photoelectron spectroscopies, and by transmission electron and cryo-transmission microscopies.

10.
Anal Biochem ; 555: 59-66, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908862

RESUMO

The development of simple, fast and reproducible techniques that provide information about the antioxidant activity (AA) of different compounds is essential to screen and discover new molecules with potential applications in the therapeutic, cosmetic, toxicological and food fields. Here, a novel and simple colorimetric method ("BCB assay") is proposed for measuring the AA of chemical compounds by protection of the reporter dye Brilliant Cresyl Blue (BCB) from loss of color due to oxidation by hypochlorite (a physiological oxidant). The decay in BCB blue color (λmax = 634 nm) in the presence of hypochlorite occurred in only 5 min and was used to track the AA of different molecules. Particularly, the AA of monoterpenes was demonstrated and used to quantify them at milimolar concentrations. Natural antioxidants like vitamins C and E, resveratrol, dithiothreitol, N-actyl-l-cysteine and glutathione were used as controls to validate the assay. Linalool, geraniol and 1,8-cineole were tested and showed in vitro AA in a concentration-dependent manner. The monoterpene concentrations providing 50% protection against oxidation (AA50) were 2.3, 36.2 and 135.0 mM for linalool, geraniol and 1,8-cineole respectively, suggesting interesting AA. The method provides a useful, fast, simple and low-cost tool to determine the in vitro AA of different molecules.


Assuntos
Antioxidantes/análise , Monoterpenos/análise , Oxazinas/química , Colorimetria/métodos , Oxirredução
11.
Food Funct ; 9(4): 2290-2299, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29560978

RESUMO

Non-small cell lung cancer (NSCLC) accounts for most cases of lung cancer. The peel oil of mandarin Citrus reticulata Blanco cv. Dancy (MPO) is a natural source of essential oils and carotenoids. Volatile and non-volatile lipid compounds were characterized by chromatographic methods. We demonstrate that MPO causes a dose-dependent growth inhibition of NSCLC model cells (A549) in culture and tumour growth in vivo of the same cells implanted in nude mice fed with MPO-supplemented diets. MPO induced cell cycle arrest mainly at the G0/G1 phase and reduced the amount of membrane-bound Ras protein along with apoptosis induction. No toxicological effect was found in liver parameters analysed in treated mice and histopathological analyses of their organs did not show any morphological changes. In conclusion, the data suggest that MPO possesses significant antitumor activity without causing systemic toxicity, proposing it as a dietary supplement that may be helpful in cancer prevention.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Citrus/química , Neoplasias Pulmonares/tratamento farmacológico , Óleos Voláteis/administração & dosagem , Óleos de Plantas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/fisiopatologia , Camundongos , Camundongos Nus , Óleos Voláteis/química , Óleos de Plantas/química
12.
Life Sci ; 199: 48-59, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29510199

RESUMO

AIMS: Linalool is a plant-derived monoterpene with anticancer activity, however its mechanisms of action remain poorly understood. The aim of this work was to elucidate the anticancer mechanisms of action of linalool in hepatocellular carcinoma (HCC) HepG2 cells. MAIN METHODS: Cell viability and proliferation were determined by WST-1 assay and BrdU incorporation, respectively. Cell cycle analysis was assessed through flow cytometry (FC) and western blot (WB). Apoptosis was determined by caspase-3 activity, TUNEL assay and WB. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed by FC and fluorescence microscopy. Expression of Ras, MAPKs (ERK, JNK and p38) and Akt/mTOR pathways were evaluated by WB. KEY FINDINGS: Linalool (0-2.5 mM) dose-dependently inhibited cell proliferation by inducing G0/G1 cell cycle arrest, through Cdk4 and cyclin A downregulation, p21 and p27 upregulation, and apoptosis, characterized by MMP loss, caspase-3 activation, PARP cleavage and DNA fragmentation. Low concentrations of linalool (1.0 mM) reduced membrane-bound Ras and Akt activity whereas higher amounts (2.0 mM) triggered mTOR inhibition and ROS generation, in correlation with MAPKs activation and Akt phosphorylation. ROS scavenger N-acetyl-L-cysteine partially rescued HepG2 cell growth and prevented MPP depolarization, ERK and JNK activation. Moreover, specific ERK and Akt phosphorylation inhibitors potentiated linalool anti-cancer activity, pointing Akt and ERK activation as pro-survival mechanisms in response to higher concentrations of linalool. SIGNIFICANCE: This report reveals that linalool induces G0/G1 arrest and apoptosis in HepG2 cells involving Ras, MAPKs and Akt/mTOR pathways and suggests that linalool is a promising anticancer agent for HCC therapy.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Monoterpenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Monoterpenos Acíclicos , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismo
13.
Curr Pharm Des ; 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141536

RESUMO

BACKGROUND: Lipid nanoparticles are considered one of the most promising systems for controlled release of therapeutic molecules highly hydrophobic and with low biodisponibility. Solid lipid nanoparticles and nanostructured lipids carriers are widely seen as the workhorses of drug delivery systems because of low toxicity, enhanced encapsulation capacity, controlled drug kinetic release, easy tailoring and targeting and practicable scale up. CONCLUSIONS: A new generation of hybrid lipid nanoparticles has emerged by combining the lipidic properties with polymers, proteins and metallic structures. The main features of hybrid lipid nanoparticles including popular methods for synthesis and characterization, biological and toxicological properties, administration routes, drug encapsulation strategies, tailoring and targeting, and potential systems for use in biomedicine are described in the present review.

14.
Colloids Surf B Biointerfaces ; 154: 123-132, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334689

RESUMO

Linalool (LN) is a monoterpene found in essential oils of plants and herbs that produces multiple effects on the mevalonate pathway and interesting antiproliferative activity in cancer cells. However, due to its poor aqueous solubility, an efficient vehicle is needed to improve its administration and bioavailability in physiological media. LN encapsulation in solid lipid nanoparticles (SLN) with different compositions was explored and in vitro tested in two cancer cell lines. SLN of myristyl myristate (MM), cetyl esters (SS) and cetyl palmitate (CP) were prepared by sonication in the presence of Pluronic®F68 as surfactant. Nanoparticle size, morphology and distribution were determined by dynamic light scattering in combination with optical and transmission electron microscopy (TEM). SLN showed spherical shape and mean diameters in the range of 90-130nm with narrow size dispersion (PDI values lower than 0.2) and Z potentials around -4.0mV. The encapsulation percentages of LN in SLN were higher than 80% for all tested formulations and exhibited in vitro LN controlled release profiles for at least 72h. The nanoparticles were physicochemically characterized by FTIR, XRD, DSC and TGA, and the incorporation of LN into SLN was higher than 80% in tested matrices. The developed formulations, and in particular SLN (MM)-LN, showed in vitro antiproliferative effects on hepatocarcinoma (HepG2) and lung adenocarcinoma (A549) cell lines in a dose-dependent response, and higher inhibitory effects were found in comparison with free LN. The cellular uptake of SLN was demonstrated by fluorescence microscopy, enhancing the ability of nanoparticles to intracellularly deliver the cargo molecules.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Portadores de Fármacos/química , Monoterpenos/administração & dosagem , Células A549 , Monoterpenos Acíclicos , Antineoplásicos Fitogênicos/farmacocinética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Técnicas In Vitro , Lipídeos/química , Monoterpenos/farmacocinética , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanotecnologia , Tamanho da Partícula
15.
Lipids ; 52(1): 37-49, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905068

RESUMO

The essential oils (EOs) of Lippia alba, an herb extensively used as a folk medicine in Latin America, are today promoted as an effective means of eliminating problems caused by hyperlipemia. We hypothesized that L.alba EOs inhibited cholesterol and triacylglycerols synthesis and decreased the intracellular depots of those lipids (lipid droplets), mechanisms involving the induction of a hypolipidemic response. Our aim was, therefore, to evaluate the hypolipogenic capability of the EOs of four L. alba chemotypes on liver-derived (HepG2) and non-liver (A549) human cell lines and to identify the potential biochemical targets of those chemotypes, particularly within the mevalonate pathway (MP). [14C]Acetate was used as radioactive precursor for assays. Lipid analyses were performed by thin-layer and capillary gas chromatography, lipid droplets analyzed by fluorescence microscopy, and HMGCR levels determined by Western blot. In both cell lines, all four chemotypes exerted hypocholesterogenic effects within a concentration range of 3.2-32 µg/mL. Nonsaponifiable lipids manifested a decrease in incorporation of [14C]acetate into squalene, lanosterol, lathosterol, and cholesterol, but not into ubiquinone, thus suggesting an inhibition of enzymes in the MP downstream from farnesyl pyrophosphate. The tagetenone chemotype, the most efficacious hypocholesterogenic L. alba EO, lowered HMGCR protein levels; inhibited triacylglycerols, cholesteryl esters, and phospholipids synthesis; and diminished lipid droplets in size and volume. These results revealed that L. alba EOs inhibited different lipogenic pathways and such lipid-lowering effects could prove essential to prevent cardiovascular diseases.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Lippia/química , Ácido Mevalônico/metabolismo , Óleos Voláteis/farmacologia , Células A549 , Linhagem Celular , Colesterol/biossíntese , Células Hep G2 , Humanos , Óleos de Plantas/farmacologia , Triglicerídeos/biossíntese
16.
Chem Biol Interact ; 214: 57-68, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24613879

RESUMO

Monoterpenes are naturally occurring plant hydrocarbons with multiple effects on the mevalonate pathway (MP), while statins competitively inhibit hydroxymethylglutarylcoenzyme-A reductase (HMGCR), the rate-limiting enzyme in the MP. Monoterpenes and statins proved capable of inhibiting both proliferation and cholesterogenesis. In the present study we assess the in vitro antiproliferative and anticholesterogenic effects of two monoterpenes: linalool and 1,8-cineole-either alone, in combination with each other, or combined individually with simvastatin-on liver-derived (HepG2) and extrahepatic (A549) cell lines. The three compounds alone inhibited cell proliferation in a dose-dependent fashion, while their pairwise combination produced synergistic antiproliferative effects in both cell lines. Incorporation experiments with [(14)C]acetate revealed that linalool and 1,8-cineole inhibited the MP, probably at different points, resulting in a reduction in cholesterogenesis and an accumulation of other MP intermediates and products. Linalool or 1,8-cineole, either together or individually with simvastatin, synergistically inhibited cholesterol synthesis. At low concentrations both monoterpenes inhibited steps specifically involved in cholesterol synthesis, whereas at higher concentrations HMGCR levels became down-regulated. Added exogenous mevalonate failed to reverse the inhibition of proliferation exerted by linalool and 1,8-cineole, suggesting that HMGCR inhibition alone is not responsible for the antiproliferative activity of those agents. This work demonstrates that monoterpenes in combination with each other, or individually in combination with simvastatin synergistically inhibits proliferation and cholesterogenesis in the human cell lines investigated, thus contributing to a clearer understanding of the action of essential-oil components, and their combination with the statins, in the targeting of specific points within a complex metabolic pathway.


Assuntos
Proliferação de Células/efeitos dos fármacos , Colesterol/biossíntese , Cicloexanóis/farmacologia , Monoterpenos/farmacologia , Sinvastatina/farmacologia , Monoterpenos Acíclicos , Western Blotting , Sinergismo Farmacológico , Esterificação , Eucaliptol , Células Hep G2 , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA