Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Energy Lett ; 9(3): 927-933, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482178

RESUMO

Vacuum techniques for perovskite photovoltaics (PV) are promising for their scalability but are rarely studied with techniques readily adaptable for industry. In this work, we study the use of close-space sublimation (CSS) for making perovskite solar cells, a technique that has seen widespread use in industry, including in PV, and benefits from high material-transfer and low working pressures. A pressed pellet of formamidinium iodide (FAI) can be used multiple times as an organic source, without needing replacement. Using CSS at a rough vacuum (10 mbar), efficient cesium formamidinium lead iodide perovskite based solar cells are obtained reaching a maximum photoconversion efficiency (PCE) of 18.7%. They maintain their performance for >650 h when thermally stressed at 85 °C in a nitrogen environment. To explain the initial rise in PCE upon heating, we used drift-diffusion simulations and identified a reduction in bulk trap density as the primary factor.

2.
ACS Energy Lett ; 8(11): 4711-4713, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37969254

RESUMO

Coevaporation of perovskite films allows for a fine control over the material stoichiometry and thickness but is typically slow, leading to several-hour processes to obtain thick films required for photovoltaic applications. In this work, we demonstrate the coevaporation of perovskite layers using faster deposition rates, obtaining 1 µm thick films in approximately 50 min. We observed distinct structural properties and obtained devices with efficiency exceeding 19%, demonstrating the relevance of this deposition process from a material perspective and also in view of potential industrialization.

3.
ACS Appl Mater Interfaces ; 15(27): 32621-32628, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368062

RESUMO

Electron transport layers (ETL) based on tin(IV) oxide (SnO2) are recurrently employed in perovskite solar cells (PSCs) by many deposition techniques. Pulsed laser deposition (PLD) offers a few advantages for the fabrication of such layers, such as being compatible with large scale, patternable, and allowing deposition at fast rates. However, a precise understanding of how the deposition parameters can affect the SnO2 film, and as a consequence the solar cell performance, is needed. Herein, we use a PLD tool equipped with a droplet trap to minimize the number of excess particles (originated from debris) reaching the substrate, and we show how to control the PLD chamber pressure to obtain surfaces with very low roughness and how the concentration of oxygen in the background gas can affect the number of oxygen vacancies in the film. Using optimized deposition conditions, we obtained solar cells in the n-i-p configuration employing methylammonium lead iodide perovskite as the absorber layer with power conversion efficiencies exceeding 18% and identical performance to devices having the more typical atomic layer deposited SnO2 ETL.

4.
Chem Mater ; 33(18): 7417-7422, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34602745

RESUMO

Cs2AgBiBr6 has been proposed as a promising lead-free and stable double perovskite alternative to hybrid and lead-based perovskites. However, the low solubility of precursors during wet synthesis, or the distinct volatility of components during evaporation, results in complex multistep synthesis approaches, hampering the widespread employment of Cs2AgBiBr6 films. Here, we present pulsed laser deposition of Cs2AgBiBr6 films as a dry, single-step and single-source deposition approach for high-quality film formation. Cs2AgBiBr6 powders were prepared by mechanochemical synthesis and pressed into a solid target maintaining phase purity. Controlled laser ablation of the double perovskite target in vacuum and a substrate temperature of 200 °C results in the formation of highly crystalline Cs2AgBiBr6 films. We discuss the importance of deposition pressure to achieve stoichiometric transfer and of substrate temperature during PLD growth to obtain high-quality Cs2AgBiBr6 films with grain sizes > 200 nm. This work demonstrates the potential of PLD, an established technique in the semiconductor industry, to deposit complex halide perovskite materials while being compatible with optoelectronic device fabrication, such as UV and X-ray detectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA